医学研究与教育 ›› 2025, Vol. 42 ›› Issue (2): 1-13.DOI: 10.3969/j.issn.1674-490X.2025.02.001
• 基础医学 •
刘珊珊1,李铭2,李诗黛1,王红杰1,2
收稿日期:
2025-02-11
发布日期:
2025-05-23
通讯作者:
王红杰(1968—),女,河北保定人,教授,博士,博士生导师,主要从事麻醉与复苏研究。E-mail: hongjiew68@126.com
作者简介:
刘珊珊(1997—),女,河北衡水人,在读硕士,主要从事麻醉与复苏研究。 E-mail: 2076520185@qq.com
基金资助:
Received:
2025-02-11
Published:
2025-05-23
摘要: 七氟烷作为一种常用的吸入性麻醉药,在临床中广泛应用。近年来七氟烷对发育期大脑的影响越来越受到关注,特别是对中枢神经系统的潜在毒性作用。综述七氟烷对发育期大脑近期及远期的影响及其机制和保护性策略的研究进展,旨在为临床实践和未来的研究提供参考。
中图分类号:
刘珊珊,李铭,李诗黛,王红杰. 七氟烷对发育期大脑神经毒性的近期及远期影响研究进展[J]. 医学研究与教育, 2025, 42(2): 1-13.
[1] SAMI A, BURCU A. Overview of sevoflurane as an volatile anesthetic[J]. Int J Clin Anesthesiol,2023,11(1):1123. [2] NIU Y X, CHENG Y Y, MIAO Z J, et al. Inhibitory neuron map of sevoflurane induced neurotoxicity model in young Primates[J]. Front Cell Neurosci, 2023, 17: 1252782.DOI: 10.3389/fncel.2023.1252782. [3] TIERNEYA L, NELSONC A 3rd. Brain development and the role of experience in the early years[J]. Zero Three, 2009, 30(2): 9-13. [4] DIMAGGIO C, SUN L S, LI G H. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort[J]. Anesth Analg, 2011, 113(5): 1143-1151. DOI: 10.1213/ANE.0b013e3182147f42. [5] FLICKR P, KATUSIC S K, COLLIGAN R C, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery[J]. Pediatrics, 2011, 128(5): e1053-e1061. DOI: 10.1542/peds.2011-0351. [6] WILDERR T, FLICKR P, SPRUNG J, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort[J]. Anesthesiology, 2009, 110(4): 796-804. DOI: 10.1097/01.anes.0000344728.34332.5d. [7] SPRUNG J, FLICK R P, KATUSIC S K, et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia[J]. Mayo Clin Proc, 2012, 87(2): 120-129. DOI: 10.1016/j.mayocp.2011.11.008. [8] O’LEARY J D, JANUS M, DUKU E, et al. A population-based study evaluating the association between surgery in early life and child development at primary school entry[J]. Anesthesiology, 2016, 125(2): 272-279. DOI: 10.1097/ALN.0000000000001200. [9] RUTH GRAHAM M, BROWNELL M, CHATEAU D G, et al. Neurodevelopmental assessment in kindergarten in children exposed to general anesthesia before the age of 4 years: aretrospective matched cohort study[J]. Anesthesiology, 2016, 125(4): 667-677. DOI: 10.1097/ALN.0000000000001245. [10] GLATZ P, SANDIN R H, PEDERSEN N L, et al. Association of anesthesia and surgery during childhood with long-term academic performance[J]. JAMA Pediatr, 2017, 171(1): e163470. DOI: 10.1001/jamapediatrics.2016.3470. [11] WARNER D O, ZACCARIELLO M J, KATUSIC S K, et al. Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the mayo anesthesia safety in kids(MASK)study[J]. Anesthesiology, 2018, 129(1): 89-105. DOI: 10.1097/ALN.0000000000002232. [12] APAI C, SHAH R, TRAN K, et al. Anesthesia and the developing brain: areview of sevoflurane-induced neurotoxicity in pediatric populations[J]. Clin Ther, 2021, 43(4): 762-778. DOI: 10.1016/j.clinthera.2021.01.024. [13] SUN M Y, XIE Z C, ZHANG J Q, et al. Mechanistic insight into sevoflurane-associated developmental neurotoxicity[J]. Cell Biol Toxicol, 2022, 38(6): 927-943. DOI: 10.1007/s10565-021-09677-y. [14] 石宝序,邵安胜.七氟烷和地氟烷对发育中大脑神经元可塑性的影响[J].医药导报, 2019, 38(7): 864-868. DOI: 10.3870/j.issn.1004-0781.2019.07.007. [15] 龚涛武,郑雪,杨洋,等.七氟烷对幼年大鼠短期认知功能的影响及其机制[J].医药导报, 2019, 38(10): 1251-1254. DOI: 10.3870/j.issn.1004-0781.2019.10.001. [16] ZHONG L H, MA X F, NIU Y X, et al. Sevoflurane exposure may cause dysplasia of dendritic spines and result in fine motor dysfunction in developing mouse through the PI3K/AKT/mTOR pathway[J]. Front Neurosci, 2022, 16: 1006175. DOI: 10.3389/fnins.2022.1006175. [17] YE J S, ZHANG Z Z, WANG Y L, et al. Altered hippocampal microRNA expression profiles in neonatal rats caused by sevoflurane anesthesia: microRNA profiling and bioinformatics target analysis[J]. Exp Ther Med, 2016, 12(3): 1299-1310. DOI: 10.3892/etm.2016.3452. [18] JI H, XU L H, WANG Z, et al. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation[J]. Exp Ther Med, 2018, 15(3): 2457-2467. DOI: 10.3892/etm.2017.5669. [19] ZHOU X, XIAN D F, XIA J H, et al. microRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway[J]. Mol Med Rep, 2017, 15(4): 2204-2212. DOI: 10.3892/mmr.2017.6268. [20] HAN X D, LI M, ZHANG X G, et al. Single sevoflurane exposure increases methyl-CpG island binding protein 2 phosphorylation in the hippocampus of developing mice[J]. Mol Med Rep, 2015, 11(1): 226-230. DOI: 10.3892/mmr.2014.2751. [21] ZHOU X, SONG F H, HE W, et al. Neonatal exposure to sevoflurane causes apoptosis and reduces nNOS protein expression in rat hippocampus[J]. Mol Med Rep, 2012, 6(3): 543-546. DOI: 10.3892/mmr.2012.976. [22] SUN G Y, XIE K, SUN Z Y, et al. Sevoflurane induces temporary spatial working memory deficits and synaptic ultrastructure impairments in the hippocampus of neonatal rats[J]. Eur Rev Med Pharmacol Sci, 2019, 23(6): 2620-2629. DOI: 10.26355/eurrev_201903_17412. [23] FENG J Y, LIN H, ZHAO Y, et al. Tandem mass tag-based quantitative proteomic analysis of effects of multiple sevoflurane exposures on the cerebral cortex of neonatal and adult mice[J]. Front Neurol, 2022, 13: 1056947.DOI: 10.3389/fneur.2022.1056947. [24] SHEN X, DONG Y L, XU Z P, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment[J]. Anesthesiology, 2013, 118(3): 502-515. DOI: 10.1097/ALN.0b013e3182834d77. [25] SATOMOTO M, SATOH Y, TERUI K, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice[J]. Anesthesiology, 2009, 110(3): 628-637. DOI: 10.1097/ALN.0b013e3181974fa2. [26] WANG S Q, FANG F, XUE Z G, et al. Neonatal sevoflurane anesthesia induces long-term memory impairment and decreases hippocampal PSD-95 expression without neuronal loss[J]. Eur Rev Med Pharmacol Sci, 2013, 17(7): 941-950. [27] LI C S, LIU S F, MEI Y X, et al. Differential effects of sevoflurane exposure on long-term fear memory in neonatal and adult rats[J]. Mol Neurobiol, 2022, 59(5): 2799-2807. DOI: 10.1007/s12035-021-02629-x. [28] LI R, WANG B, CAO X H, et al. Sevoflurane exposure in the developing brain induces hyperactivity, anxiety-free, and enhancement of memory consolidation in mice[J]. Front Aging Neurosci, 2022, 14: 934230. DOI: 10.3389/fnagi.2022.934230. [29] BAKRI M H, ISMAIL E A, ALI M S, et al. Behavioral and emotional effects of repeated general anesthesia in young children[J]. Saudi J Anaesth, 2015, 9(2): 161-166. DOI: 10.4103/1658-354X.152843. [30] RAPER J, DEBIASIOJ C, MURPHYK L, et al. Persistent alteration in behavioural reactivity to a mild social stressor in Rhesus monkeys repeatedly exposed to sevoflurane in infancy[J]. Br J Anaesth, 2018, 120(4): 761-767. DOI: 10.1016/j.bja.2018.01.014. [31] LIN D, LIU J Y, KRAMBERG L, et al. Early-life single-episode sevoflurane exposure impairs social behavior and cognition later in life[J]. Brain Behav, 2016, 6(9): e00514. DOI: 10.1002/brb3.514. [32] MA J F, LI C G, SUN M Y, et al. Isoflurane and sevoflurane affects Wnt/β-catenin signaling pathways in hippocampal formation of neonatal rats[J]. Eur Rev Med Pharmacol Sci, 2017, 21(8): 1980-1989. [33] LIANG X L, ZHANG Y, ZHANG C, et al. Effect of repeated neonatal sevoflurane exposure on the learning, memory and synaptic plasticity at juvenile and adult age[J]. Am J Transl Res, 2017, 9(11): 4974-4983. [34] YU Z Q, WANG J B, WANG H Y, et al. Effects of sevoflurane exposure during late pregnancy on brain development and beneficial effects of enriched environment on offspring cognition[J]. Cell Mol Neurobiol, 2020, 40(8): 1339-1352. DOI: 10.1007/s10571-020-00821-6. [35] HU X Y, HU X D, HUANG G R. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats[J]. J Cell Biochem, 2019, 120(10): 18209-18218. DOI: 10.1002/jcb.29127. [36] LIU Y F, LIU C L, ZENG M T, et al. Influence of sevoflurane exposure on mitogen-activated protein kinases and Akt/GSK-3β/CRMP-2 signaling pathways in the developing rat brain[J]. Exp Ther Med, 2018, 15(2): 2066-2073. DOI: 10.3892/etm.2017.5651. [37] SONG Q, MA Y L, SONG J Q, et al. Sevoflurane induces neurotoxicity in young mice through FAS/FASL signaling[J]. Genet Mol Res, 2015, 14(4): 18059-18068. DOI: 10.4238/2015.December.22.32. [38] JIN Y, LI H, XIE G H, et al. Sevoflurane combined with ATP activates caspase-1 and triggers caspase-1-dependent pyroptosis in murine J774 macrophages[J]. Inflammation, 2013, 36(2): 330-336. DOI: 10.1007/s10753-012-9550-6. [39] LU Y, WU X, DONG Y L, et al. Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice[J]. Anesthesiology, 2010, 112(6): 1404-1416. DOI: 10.1097/ALN.0b013e3181d94de1. [40] LIAO Z X, HUANG Z Q, LI J H, et al. Regulation of CRMP2 by Cdk5 and GSK-3β participates in sevoflurane-induced dendritic development abnormalities and cognitive dysfunction in developing rats[J]. Toxicol Lett, 2021, 341: 68-79. DOI: 10.1016/j.toxlet.2021.01.023. [41] LI Y Z, ZHANG L L, WANG C Y, et al. Sevoflurane-induced learning deficits and spine loss via nectin-1/corticotrophin-releasing hormone receptor type 1 signaling[J]. Brain Res, 2019, 1710: 188-198. DOI: 10.1016/j.brainres.2018.12.010. [42] ZHANG L, CHENG Y Y, XUE Z Y, et al. Sevoflurane impairs m6A-mediated mRNA translation and leads to fine motor and cognitive deficits[J]. Cell Biol Toxicol, 2022, 38(2): 347-369. DOI: 10.1007/s10565-021-09601-4. [43] XIAO H Y, LIU B, CHEN Y L, et al. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane[J]. Intl J Devlp Neuroscience, 2016, 48(1): 38-49. DOI: 10.1016/j.ijdevneu.2015.11.001. [44] HUANG X F, YING J, YANG D Y, et al. The mechanisms of sevoflurane-induced neuroinflammation[J]. Front Aging Neurosci, 2021, 13: 717745. DOI: 10.3389/fnagi.2021.717745. [45] ZHANG X, LIU S L, NEWPORT G D, et al. In vivomonitoring of sevoflurane-induced adverse effects in neonatal nonhuman Primates using small-animal positron emission tomography[J]. Anesthesiology, 2016, 125(1): 133-146. DOI: 10.1097/ALN.0000000000001154. [46] LI H, ZHOU B, LIAO P, et al. Prolonged exposure of neonatal mice to sevoflurane leads to hyper-ramification in microglia, reduced contacts between microglia and synapses, and defects in adult behavior[J]. Front Neurol, 2023, 14: 1142739. DOI: 10.3389/fneur.2023.1142739. [47] YANG M, LIAN N Q, YU Y, et al. Coenzyme Q10 alleviates sevoflurane-induced neuroinflammation by regulating the levels of apolipoprotein E and phosphorylated tau protein in mouse hippocampal neurons[J]. Mol Med Rep, 2020, 22(1): 445-453. DOI: 10.3892/mmr.2020.11131. [48] DONG Y L, LIANG F, HUANG L N, et al. The anesthetic sevoflurane induces tau trafficking from neurons to microglia[J]. Commun Biol, 2021, 4(1): 560. DOI: 10.1038/s42003-021-02047-8. [49] LIU B, GU Y C, XIAO H Y, et al. Altered metabolomic profiles may be associated with sevoflurane-induced neurotoxicity in neonatal rats[J]. Neurochem Res, 2015, 40(4): 788-799. DOI: 10.1007/s11064-015-1529-x. [50] LIU B, BAI W J, OU G Y, et al. Cdh1-mediated metabolic switch from pentose phosphate pathway to glycolysis contributes to sevoflurane-induced neuronal apoptosis in developing brain[J]. ACS Chem Neurosci, 2019, 10(5): 2332-2344. DOI: 10.1021/acschemneuro.8b00644. [51] 李文静,白亚璠,安立新.全身麻醉药对发育神经元的神经毒性作用与线粒体动力学的关系[J].国际麻醉学与复苏杂志, 2020, 41(12): 1212-1216. DOI: 10.3760/cma.j.cn321761-20190731-00181. [52] ZHU X Q, YAO Y Y, GUO M Y, et al. Sevoflurane increases intracellular calcium to induce mitochondrial injury and neuroapoptosis[J]. Toxicol Lett, 2021, 336: 11-20. DOI: 10.1016/j.toxlet.2020.11.002. [53] ZHANG H, NIU Y Q, QIU L L, et al. Melatonin-mediated mitophagy protects against long-term impairments after repeated neonatal sevoflurane exposures[J]. Int Immunopharmacol, 2023, 125(Pt B): 111210.DOI: 10.1016/j.intimp.2023.111210. [54] XU L L, XU Q, DAI S B, et al. lncRNA Xist regulates sevoflurane-induced social and emotional impairment by modulating miR-98-5p/EDEM1 signaling axis in neonatal mice[J]. Mol Ther Nucleic Acids, 2021, 24: 939-950. DOI: 10.1016/j.omtn.2021.04.010. [55] 刘思雨,张磊.七氟烷抑制新生小鼠前额叶皮质神经祖细胞向神经元分化发育[J].上海交通大学学报(医学版), 2023, 43(9): 1115-1130. DOI: 10.3969/j.issn.1674-8115.2023.09.006. [56] XIONG J, WANG H J, MU F, et al. miR-125b-5p inhibitor might protect against sevoflurane-induced cognitive impairments by targeting LIMK1[J]. Curr Neurovasc Res, 2019, 16(4): 382-391. DOI: 10.2174/1567202616666190906 145936. [57] SHEN Y S, ZHOU T, LIU X B, et al. Sevoflurane-induced miR-211-5p promotes neuronal apoptosis by inhibiting Efemp2[J]. ASN Neuro, 2021, 13: 17590914211035036.DOI: 10.1177/17590914211035036. [58] ZHAO L, WANG Z H, CHEN H T, et al. Effects of lncRNA HOXA11-AS on sevoflurane-induced neuronal apoptosis and inflammatory responses by regulating miR-98-5p/EphA4[J]. Mediators Inflamm, 2023, 2023: 7750134.DOI: 10.1155/2023/7750134. [59] PÎR?瘙塁COVEANU D F V, PIRICI I, TUDORICĂ V, et al. Tau protein in neurodegenerative diseases: a review[J]. Rom J Morphol Embryol, 2017, 58(4): 1141-1150. [60] FARACO G, HOCHRAINER K, SEGARRA S G, et al. Dietary salt promotes cognitive impairment through tau phosphorylation[J]. Nature, 2019, 574(7780): 686-690. DOI: 10.1038/s41586-019-1688-z. [61] LIANG F, LI M Z, XU M, et al. Sevoflurane anaesthesia induces cognitive impairment in young mice through sequential tau phosphorylation[J]. Br J Anaesth, 2023, 131(4): 726-738. DOI: 10.1016/j.bja.2023.06.059. [62] TAO G R, ZHANG J, ZHANG L, et al. Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice[J]. Anesthesiology, 2014, 121(3): 510-527. DOI: 10.1097/ALN.0000000000000278. [63] LASAGNA-REEVES C A, DE HARO M, HAO S, et al. Reduction of Nuak1 decreases tau and reverses phenotypes in a tauopathy mouse model[J]. Neuron, 2016, 92(2): 407-418. DOI: 10.1016/j.neuron.2016.09.022. [64] YU Y, YANG Y Y, TAN H, et al. Tau contributes to sevoflurane-induced neurocognitive impairment in neonatal mice[J]. Anesthesiology, 2020, 133(3): 595-610. DOI: 10.1097/ALN.0000000000003452. [65] LI W T, MENG X W, PENG K, et al. Boosting microglial lipid metabolism via TREM2 signaling by biomimetic nanoparticles to attenuate the sevoflurane-induced developmental neurotoxicity[J]. Adv Sci(Weinh), 2024, 11(10): e2305989. DOI: 10.1002/advs.202305989. [66] 强婷婷,张丽,胡宪文.七氟醚对发育期大脑认知功能的影响及其机制研究进展[J].国际麻醉学与复苏杂志, 2022, 43(6): 664-668. DOI: 10.3760/cma.j.cn321761-20210531-00577. [67] ZENG S, ZHANG J Q. Editorial: Anesthetic-induced neurotoxicity and neurocognitive impairment of vulnerable brains[J]. Front Aging Neurosci, 2023, 15: 1293491. DOI: 10.3389/fnagi.2023.1293491. [68] PENG S, YAN H Z, LIU P R, et al. Phosphodiesterase 4 inhibitor roflumilast protects rat hippocampal neurons from sevoflurane induced injury viamodulation of MEK/ERK signaling pathway[J]. Cell Physiol Biochem, 2018, 45(6): 2329-2337. DOI: 10.1159/000488180. [69] ZHOU B, CHEN L M, LIAO P, et al. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia[J]. PLoS Biol, 2019, 17(8): e3000086. DOI: 10.1371/journal.pbio.3000086. [70] LI G H, DU J E, WANG L, et al. Developmental neurotoxicity in the context of multiple sevoflurane exposures: potential role of histone deacetylase 6[J]. Neurotoxicol Teratol, 2019, 74: 106813.DOI: 10.1016/j.ntt.2019.106813. [71] GAO T T, HUANG Z Q. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms[J]. Epigenomics, 2024, 16(18): 1231-1252. DOI: 10.1080/17501911.2024.2395250. [72] CHOI E H, BLASIAK A, LEE J, et al. Modulation of neural activity for myelination in the central nervous system[J]. Front Neurosci, 2019, 13: 952. DOI: 10.3389/fnins.2019.00952. [73] NAVE K A, WERNER H B. Myelination of the nervous system: mechanisms and functions[J]. Annu Rev Cell Dev Biol, 2014, 30: 503-533. DOI: 10.1146/annurev-cellbio-100913-013101. [74] ZHANG L, XUE Z Y, LIU Q D, et al. Disrupted folate metabolism with anesthesia leads to myelination deficits mediated by epigenetic regulation of ERMN[J]. E Bio Medicine, 2019, 43: 473-486. DOI: 10.1016/j.ebiom.2019.04.048. [75] SHI Y W, WANG G, LI J Y, et al. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats[J]. Neuroreport, 2017, 28(17): 1170-1175. DOI: 10.1097/WNR.0000000000000899. [76] IKETANI M, HATOMI M, FUJITA Y, et al. Inhalation of hydrogen gas mitigates sevoflurane-induced neuronal apoptosis in the neonatal cortex and is associated with changes in protein phosphorylation[J]. J Neurochem, 2024, 168(9): 2775-2790.DOI: 10.1111/jnc.16142. [77] YONAMINE R, SATOH Y, KODAMA M, et al. Coadministration of hydrogen gas as part of the carrier gas mixture suppresses neuronal apoptosis and subsequent behavioral deficits caused by neonatal exposure to sevoflurane in mice[J]. Anesthesiology, 2013, 118(1): 105-113. DOI:10.1097/ALN.0b013e318275146d. [78] GOYAGI T. The additional oxygen as a carrier gas during long-duration sevoflurane exposure ameliorate the neuronal apoptosis and improve the long-term cognitive function in neonatal rats[J]. Brain Res, 2018, 1678: 220-230. DOI: 10.1016/j.brainres.2017.10.014. [79] ZHOU X, LI W D, YUAN B L, et al. Lithium treatment prevents apoptosis in neonatal rat hippocampus resulting from sevoflurane exposure[J]. Neurochem Res, 2016, 41(8): 1993-2005. DOI: 10.1007/s11064-016-1909-x. [80] WANG Y L, AN X H, ZHANG X Q, et al. Lithium chloride ameliorates cognition dysfunction induced by sevoflurane anesthesia in rats[J]. FEBS Open Bio, 2020, 10(2): 251-258. DOI: 10.1002/2211-5463.12779. [81] WANG L Y, TANG Z J, HAN Y Z. Neuroprotective effects of caffeic acid phenethyl ester against sevoflurane-induced neuronal degeneration in the hippocampus of neonatal rats involve MAPK and PI3K/Akt signaling pathways[J].Mol Med Rep, 2016, 14(4): 3403-3412. DOI: 10.3892/mmr.2016.5586. [82] GOYAGI T. Erythropoietin reduces neurodegeneration and long-term memory deficits following sevoflurane exposure in neonatal rats[J]. Neurotox Res, 2019, 36(4): 817-826. DOI: 10.1007/s12640-019-00028-8. [83] BO L J, YU P X, ZHANG F Z, et al. Dexmedetomidine mitigates sevoflurane-induced cell cycle arrest in hippocampus[J]. J Anesth, 2018, 32(5): 717-724. DOI: 10.1007/s00540-018-2545-1. [84] TANG X L, ZHAO Y L, ZHOU Z Q, et al. Resveratrol mitigates sevoflurane-induced neurotoxicity by the SIRT1-dependent regulation of BDNF expression in developing mice[J]. Oxid Med Cell Longev, 2020, 2020: 9018624.DOI: 10.1155/2020/9018624. [85] XU Z, YOU Y, TANG Q, et al. Echinatin mitigates sevoflurane-induced hippocampal neurotoxicity and cognitive deficits through mitigation of iron overload and oxidative stress[J]. Pharm Biol, 2022, 60(1): 1915-1924. DOI: 10.1080/13880209.2022.2123941. [86] ZHANG Y B, ZHAO Y, RAN Y W, et al. Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity[J]. Transl Neurosci, 2020, 11(1): 215-226. DOI: 10.1515/tnsci-2020-0118. [87] ZHOU R S, LI X G, LI L, et al. Theaflavins alleviate sevoflurane-induced neurocytotoxicityvia Nrf2 signaling pathway[J]. Int J Neurosci, 2020, 130(1): 1-8. DOI: 10.1080/00207454.2019.1667788. [88] 杨宝锋,王婕,缪长虹,等.布美他尼对多次七氟烷麻醉新生大鼠海马NKCC1与KCC2基因表达变化及成年后焦虑状态的影响[J].中华行为医学与脑科学杂志, 2020, 29(9): 780-784. DOI: 10.3760/cma.j.cn371468-20200722-01583. [89] 吴畏,陈政,杜真,等.长春西汀通过Wnt/GSK3β/β-catenin信号通路改善七氟醚麻醉诱导幼鼠远期学习记忆功能[J].中国临床药理学与治疗学, 2021, 26(5): 539-545. DOI: 10.12092/j.issn.1009-2501.2021.05.010. [90] WALI B, SAYEED I, STEIN D G, et al. Prophylactic progesterone prevents adverse behavioural and neurocognitive effects of neonatal anaesthesia exposure in rat[J]. Br J Anaesth, 2022, 128(2): 301-310. DOI: 10.1016/j.bja.2021.10.030. [91] ZHANG D Y, WU L P, MA L, et al. Circular RNA DLGAP4 alleviates sevoflurane-induced neurotoxicity by regulating miR-9-5p/Sirt1/BDNF pathway[J]. Exp Cell Res, 2023, 433(2): 113861.DOI: 10.1016/j.yexcr.2023.113861. |
[1] | 张圆圆,李秀莉,孙克娟,王子函,程琴柳,李妍. 社区老年人休闲活动与轻度认知障碍患病风险的关系[J]. 医学研究与教育, 2024, 41(3): 62-70. |
[2] | 刘宏祥,赵永辰,史曼,王涛,李轶璠. 经方在老年认知功能障碍中的应用[J]. 医学研究与教育, 2016, 33(5): 71-73. |
[3] | 张钦聪,李会敏,刘喜艳. 卒中后抑郁和认知功能障碍的相关性研究[J]. 医学研究与教育, 2015, 32(4): 56-60. |
[4] | 武广义,李永乐,武懿. 七氟烷对体外循环肺损伤的保护作用[J]. 医学研究与教育, 2013, 30(6): 17-21. |
[5] | 索军芳,王浙东,吉永春,沈廉娟. 丙戊酸钠单药治疗首诊癫痫患儿的P300短期变化分析[J]. 医学研究与教育, 2009, 26(3): 29-30,35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||