[1] 孙立梅, 吴崧霖, 潭小华, 等. 广东省2012—2016年柯萨奇病毒A组16型感染手足口病病例流行特征分析[J].中华流行病学杂志, 2018, 39(3): 342-346. DOI: 10.3760/cma.j.issn.0254-6450.2018.03.018. [2] 刘艳艳, 简千棋, 马丽波, 等. 2013—2018年昆明市重症手足口病实验室监测结果分析[J]. 现代预防医学, 2020, 47(2): 314-316. [3] 张海艳, 许宝麟, 黄辉, 等. 2013—2016年北京市东城区手足口病流行病学特征[J]. 职业与健康, 2018, 34(6): 808-810. DOI: 10.13329/j.cnki.zyyjk.2018.0223. [4] 张萌, 段亚丽, 王巍, 等. 北京及其周边地区儿童手足口病病原学监测及流行病学分析(2017—2018年)[J].国际流行病学传染病学杂志, 2020, 47(1): 21-24. DOI: 10.3760/cma.j.issn.1673-4149.2020.01.005. [5] 朱宝增, 赵文娜, 刘莹莹, 等. 河北省2008-2017年手足口病流行和病原特征分析[J].中华疾病控制杂志, 2019,23(3): 356-359. DOI: 10.16462/j.cnki.zhjbkz.2019.03.023. [6] 姚学君, 李家学, 李靖欣, 等. 江苏某农村地区柯萨奇病毒A组16型感染所致疾病负担研究[J].江苏预防医学, 2018, 29(4): 368-370. DOI: 10.13668/j.issn.1006-9070.2018.04.002. [7] RAO D C, NAIDU J R, MAIYA P P, et al. Large-scale HFMD epidemics caused by Coxsackievirus A16 in Bangalore, India during 2013 and 2015[J]. Infect Genet Evol, 2017, 55: 228-235. DOI: 10.1016/j.meegid.2017.08.030. [8] ZHAO K, HAN X, WANG G, et al. Circulating coxsackievirus A16 identified as recombinant type A human enterovirus, China[J]. Emerg Infect Dis, 2011, 17(8): 1537-1540. DOI: 10.3201/eid1708.101719. [9] 耿海杰,任丽萍,封永建,等.西宁市2017—2018年柯萨奇A16型肠道病毒VP1基因分子特征分析[J].中华实验和临床病毒学杂志,2019,33(5): 482-484. DOI: 10.3760/cma.j.issn.1003-9279.2019.05.008. [10] 王杨, 李祎, 彭传梅, 等. 手足口病柯萨奇病毒A组16型VP1基因遗传变异[J]. 中华传染病杂志, 2019, 37(3): 163-166. DOI: 10.3760/cma.j.issn.1000-6680.2019.03.007. [11] 姚相杰, 王伟琪, 陈龙, 等. 2016—2017年深圳地区柯萨奇病毒A16型分子特征分析[J]. 中华微生物学和免疫学杂志, 2019, 39(9): 652-656. DOI: 10.3760/cma.j.issn.0254-5101.2019.09.002. [12] 刘俊, 杨雅林, 张曦. 柯萨奇病毒A组16型与肠道病毒71型致手足口病临床特点比较[J]. 中国药物与临床, 2019, 19(13): 2222-2224. DOI: 10.11655/zgywylc2019.13.036. [13] YANG J H, YANG C F, GUO N N, et al. Type I interferons triggered through the toll-like receptor 3-TRIF pathway control coxsackievirus A16 infection in young mice[J]. J Virol, 2015, 89(21): 10860-10867. DOI: 10.1128/jvi.01627-15. [14] 屈晓婷. CA6阳性与EV71、CA16阳性手足口病患儿临床特征分析[J]. 中国妇幼健康研究, 2017, 28(10): 1226-1228. DOI: 10.3969/j.issn.1673-5293.2017.10.021. [15] RUI Y J, SU J M, WANG H, et al. Disruption of MDA5-mediated innate immune responses by the 3C proteins of coxsackievirus A16, coxsackievirus A6, and Enterovirus D68[J]. J Virol, 2017, 91(13): 1-21. DOI: 10.1128/jvi.00546-17. [16] BUSCH A, EKEN S M, MAEGDEFESSEL L. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease[J]. Ann Transl Med, 2016, 4(12): 236. DOI: 10.21037/atm.2016.06.06. [17] HU Y J, SONG J, LIU L D, et al. Comparison analysis of microRNAs in response to EV71 and CA16 infection in human bronchial epithelial cells by high-throughput sequencing to reveal differential infective mechanisms[J]. Virus Res, 2017, 228: 90-101. DOI: 10.1016/j.virusres.2016.11.024. [18] SONG J, HU Y J, HU Y G, et al. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD[J]. Virus Res, 2016, 214: 1-10. DOI: 10.1016/j.virusres.2016.01.002. [19] LIU Q W, SHI J P, HUANG X L, et al. A murine model of coxsackievirus A16 infection for anti-viral evaluation[J]. Antivir Res, 2014, 105: 26-31. DOI: 10.1016/j.antiviral.2014.02.015. [20] LI J P, LIAO Y, ZHANG Y, et al. Experimental infection of tree shrews(Tupaia belangeri)with Coxsackie virus A16[J]. Zoological Res, 2014, 35(6): 485-491. DOI: 10.13918/j.issn.2095-8137.2014.6.485. [21] WANG J J, ZHANG Y, ZHANG X L, et al. Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques[J]. Virology, 2017, 500: 198-208. DOI: 10.1016/j.virol.2016.10.031. [22] PUENPA J, SUWANNAKARN K, CHANSAENROJ J, et al. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of Enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease[J]. J Virol Methods, 2017, 248: 92-99. DOI: 10.1016/j.jviromet.2017.06.013. [23] ZHANG J, WENG Z X, DU H L, et al. Development and evaluation of rapid point-of-care tests for detection of Enterovirus 71 and Coxsackievirus A16 specific immunoglublin M antibodies[J]. J Virol Methods, 2016, 231: 44-47. DOI: 10.1016/j.jviromet.2016.01.015. [24] 郑惠文, 候东佩, 李嘉祺, 等. 基于重组荧光病毒的流式细胞术检测抗CV-A16中和抗体的研究[J]. 病毒学报, 2020, 36(3): 385-393. DOI: 10.13242/j.cnki.bingduxuebao.003697. [25] WANG J J, QI S D, ZHANG X L, et al. Coxsackievirus A 16 infection does not interfere with the specific immune response induced by an Enterovirus 71 inactivated vaccine in rhesus monkeys[J]. Vaccine, 2014, 32(35): 4436-4442. DOI: 10.1016/j.vaccine.2014.06.062. [26] YANG L S, LIU Y J, LI S X, et al. A novel inactivated Enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice[J]. Vaccine, 2016, 34(48): 5938-5945. DOI: 10.1016/j.vaccine.2016.10.018. [27] LYU K, HE Y L, LI H Y, et al. Crystal structures of yeast-produced Enterovirus 71 and Enterovirus 71/coxsackievirus A16 chimeric virus-like particles provide the structural basis for novel vaccine design against hand-foot-and-mouth disease[J]. J Virol, 2015, 89(12): 6196-6208. DOI: 10.1128/jvi.00422-15. [28] ZHANG C, LIU Q W, KU Z Q, et al. Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice[J]. Antivir Res, 2016, 129: 47-51. DOI: 10.1016/j.antiviral.2016.02.011. [29] 张浩然, 姜莉, 杨二霞, 等. 不同佐剂对柯萨奇病毒A组16型灭活疫苗诱导小鼠体液免疫应答的影响[J]. 药物评价研究, 2020, 43(5): 829-834. DOI: 10.7501/j.issn.1674-6376.2020.05.006. [30] LIM H, IN H J, LEE J A, et al. The immunogenicity and protection effect of an inactivated coxsackievirus A6, A10, and A16 vaccine against hand, foot, and mouth disease[J]. Vaccine, 2018, 36(24): 3445-3452. DOI: 10.1016/j.vaccine.2018.05.005. |