[1] KAEBERLEIN M, MCVEY M, GUARENTE L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms[J]. Genes Dev, 1999, 13(19): 2570-2580. DOI: 10.1101/gad.13.19.2570. [2] GRABOWSKA W, SIKORA E, BIELAK-ZMIJEWSKA A. Sirtuins, a promising target in slowing down the ageing process[J]. Biogerontology, 2017, 18(4): 447-476. DOI: 10.1007/s10522-017-9685-9. [3] BENEDETTI R, CONTE M, ALTUCCI L. Targeting histone deacetylases in diseases: where are we?[J]. Antioxid Redox Signal, 2015, 23(1): 99-126. DOI: 10.1089/ars.2013.5776. [4] BONKOWSKI M S, SINCLAIR D A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds[J]. Nat Rev Mol Cell Biol, 2016, 17(11): 679-690. DOI: 10.1038/nrm.2016.93. [5] HEGER V, TYNI J, HUNYADI A, et al. Quercetin based derivatives as sirtuin inhibitors[J]. Biomed Pharmacother, 2019, 111:1326-1333. DOI: 10.1016/j.biopha.2019.01.035. [6] SINGH C K, CHHABRA G, NDIAYE M A, et al. The role of sirtuins in antioxidant and redox signaling[J]. Antioxid Redox Signal, 2018, 28(8): 643-661. DOI: 10.1089/ars.2017.7290. [7] AKÇAY G, BELMONTE M A, AQUILA B, et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain[J]. Nat Chem Biol, 2016, 12(11): 931-936. DOI: 10.1038/nchembio.2174. [8] IMPERATORE F, MAURIZIO J, VARGAS AGUILAR S, et al. SIRT1 regulates macrophage self-renewal[J]. EMBO J, 2017, 36(16): 2353-2372. DOI: 10.15252/embj.201695737. [9] MORIGI M, PERICO L, BENIGNI A. Sirtuins in renal health and disease[J]. J Am Soc Nephrol, 2018, 29(7): 1799-1809. DOI: 10.1681/asn.2017111218. [10] UTANI K, FU H Q, JANG S M, et al. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability[J]. Nucleic Acids Res, 2017, 45(13): 7807-7824. DOI: 10.1093/nar/gkx468. [11] PEREZ-PINZON M, KORONOWSKI K. Sirt1 in cerebral ischemia[J]. Brain Circ, 2015, 1(1): 69. DOI: 10.4103/2394-8108.162532. [12] NAKAMURA K, ZHANG M, KAGEYAMA S, et al. Macrophage heme oxygenase-1-SIRT1-p53 Axis regulates sterile inflammation in liver ischemia-reperfusion injury[J]. J Hepatol, 2017, 67(6): 1232-1242. DOI: 10.1016/j.jhep.2017.08.010. [13] XU F L, XU J X, XIONG X, et al. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation[J]. Redox Rep, 2019, 24(1): 70-74. DOI: 10.1080/13510002.2019.1658377. [14] XIE X Q, ZHANG P, TIAN B, et al. Downregulation of NAD-dependent deacetylase SIRT2 protects mouse brain against ischemic stroke[J]. Mol Neurobiol, 2017, 54(9): 7251-7261. DOI: 10.1007/s12035-016-0173-z. [15] KREY L, LÜHDER F, KUSCH K, et al. Knockout of silent information regulator 2(SIRT2)preserves neurological function after experimental stroke in mice[J]. J Cereb Blood Flow Metab, 2015, 35(12): 2080-2088. DOI: 10.1038/jcbfm.2015.178. [16] NIE H, HONG Y Y, LU X F, et al. SIRT2 mediates oxidative stress-induced apoptosis of differentiated PC12 cells[J]. Neuro Report, 2014, 25(11): 838-842. DOI: 10.1097/wnr.0000000000000192. [17] WANG J, FENG H L, ZHANG J, et al. Lithium and valproate acid protect NSC34 cells from H2O2-induced oxidative stress and upregulate expressions of SIRT3 and CARM1[J]. Neuro Endocrinology Letters, 2013, 34(7): 648. [18] DAI S H, CHEN T, WANG Y H, et al. Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells[J]. Int J Mol Med, 2014, 34(4): 1159-1168. DOI: 10.3892/ijmm.2014.1876. [19] YIN J X, HAN P C, TANG Z W, et al. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke[J]. J Cereb Blood Flow Metab, 2015, 35(11): 1783-1789. DOI: 10.1038/jcbfm.2015.123. [20] NOVGORODOV S A, RILEY C L, KEFFLER J A, et al. SIRT3 deacetylates ceramide synthases[J]. J Biol Chem, 2016, 291(4): 1957-1973. DOI: 10.1074/jbc.m115.668228. [21] PFISTER J A, MA C, MORRISON B E, et al. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity[J]. PLoS One, 2008, 3(12): e4090. DOI: 10.1371/journal.pone.0004090. [22] SHIH J, LIU L, MASON A, et al. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid[J]. J Neurochem, 2014, 131(5): 573-581. DOI: 10.1111/jnc.12942. [23] KUMAR S, LOMBARD D B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer[J]. Antioxid Redox Signal, 2015, 22(12): 1060-1077. DOI: 10.1089/ars.2014.6213. [24] SCHIEDEL M, ROBAA D, RUMPF T, et al. The current state of NAD+-dependent histone deacetylases(sirtuins)as novel therapeutic targets[J]. Med Res Rev, 2018, 38(1): 147-200. DOI: 10.1002/med.21436. [25] KHAN D, SARIKHANI M, DASGUPTA S, et al. SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart[J]. J Cell Physiol, 2018, 233(7):5478-5489. DOI: 10.1002/jcp.26434. [26] MAO Z, HINE C, TIAN X, et al. SIRT6 promotes DNA repair under stress by activating PARP1[J]. Science, 2011, 332(6036): 1443-1446. DOI: 10.1126/science.1202723. [27] MICHISHITA E, MCCORD R A, BERBER E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J]. Nature, 2008, 452(7186): 492-496. DOI: 10.1038/nature06736. [28] MICHISHITA E, MCCORD R A, BOXER L D, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6[J]. Cell Cycle, 2009, 8(16): 2664-2666. DOI: 10.4161/cc.8.16.9367. [29] LUO P C, QIN C, ZHU L H, et al. Ubiquitin-specific peptidase 10(USP10)inhibits hepatic steatosis, insulin resistance, and inflammation through Sirt6[J]. Hepatology, 2018, 68(5): 1786-1803. DOI: 10.1002/hep.30062. [30] SIMON M, VAN METER M, ABLAEVA J, et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation[J]. Cell Metab, 2019, 29(4): 871-885. DOI: 10.1016/j.cmet.2019.02.014. [31] MOSTOSLAVSKY R, CHUA K F, LOMBARD D B, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006, 124(2): 315-329. DOI: 10.1016/j.cell.2005.11.044. [32] KANFI Y, PESHTI V, GIL R, et al. SIRT6 protects against pathological damage caused by diet-induced obesity[J]. Aging Cell, 2010, 9(2): 162-173. DOI: 10.1111/j.1474-9726.2009.00544.x. [33] HU Y Y, LI R L, YANG H, et al. Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusion-stimulated brain endothelial cells[J]. J Stroke Cerebrovasc Dis, 2015, 24(3): 601-609. DOI: 10.1016/j.jstrokecerebrovasdis.2014.10.006. [34] LEE O H, KIM J, KIM J M, et al. Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia[J]. Biochem Biophys Res Commun, 2013, 438(2): 388-394. DOI: 10.1016/j.bbrc.2013.07.085. [35] SHAO J X, YANG X, LIU T Y, et al. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290. DOI: 10.1007/s13238-016-0257-6. [36] TSAI Y C, GRECO T M, CRISTEA I M. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis[J]. Mol Cell Proteomics, 2014, 13(1): 73-83. DOI: 10.1074/mcp.m113.031377. |