[1] GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 439-458. DOI: 10.1016/S1474-4422(19)30034-1. [2] MA Q F, LI R, WANG L J, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/S2468-2667(21)00228-0. [3] HUANG Q, XIA J. Influence of the gut microbiome on inflammatory and immune response after stroke[J]. Neurol Sci, 2021, 42(12): 4937-4951. DOI: 10.1007/s10072-021-05603-6. [4] ZHANG S X. Microglial activation after ischaemic stroke[J]. Stroke Vasc Neurol, 2019, 4(2): 71-74. DOI: 10.1136/svn-2018-000196. [5] LEE J, D'AIGLE J, ATADJA L, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice[J]. Circ Res, 2020, 127(4): 453-465. DOI: 10.1161/CIRCRESAHA.119.316448. [6] MOHAJERI M H, LA FATA G, STEINERT R E, et al. Relationship between the gut microbiome and brain function[J]. Nutr Rev, 2018, 76(7): 481-496. DOI: 10.1093/nutrit/nuy009. [7] DURGAN D J, LEE J, MCCULLOUGH L D, et al. Examining the role of the microbiota-gut-brain axis in stroke[J]. Stroke, 2019, 50(8): 2270-2277. DOI: 10.1161/STROKEAHA.119.025140. [8] SCHNEIDER C, OKUN J G, SCHWARZ K V, et al. Trimethylamine-N-oxide is elevated in the acute phase after ischaemic stroke and decreases within the first days[J]. Eur J Neurol, 2020, 27(8): 1596-1603. DOI: 10.1111/ene.14253. [9] ZHANG H Y, HUANG Y Y, LI X J, et al. Dynamic process of secondary pulmonary infection in mice with intracerebral hemorrhage[J]. Front Immunol, 2021, 12: 767155. DOI: 10.3389/fimmu.2021.767155. [10] FUNG T C, OLSON C A, HSIAO E Y. Interactions between the microbiota, immune and nervous systems in health and disease[J]. Nat Neurosci, 2017, 20(2): 145-155. DOI: 10.1038/nn.4476. [11] HU W J, KONG X Y, WANG H, et al. Ischemic stroke and intestinal flora: an insight into brain-gut axis[J]. Eur J Med Res, 2022, 27(1): 73. DOI: 10.1186/s40001-022-00691-2. [12] BONAZ B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction[J]. Neurogastroenterol Motil, 2022, 34(10): e14456. DOI: 10.1111/nmo.14456. [13] BONAZ B, SINNIGER V, PELLISSIER S. Therapeutic potential of vagus nerve stimulation for inflammatory bowel diseases[J]. Front Neurosci, 2021, 15: 650971. DOI: 10.3389/fnins.2021.650971. [14] YE D Y, HU Y T, ZHU N, et al. Exploratory investigation of intestinal structure and function after stroke in mice[J]. Mediators Inflamm, 2021, 2021: 1315797. DOI: 10.1155/2021/1315797. [15] WEERTH C D. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis[J]. Neurosci Biobehav Rev, 2017, 83: 458-471. DOI: 10.1016/j.neubiorev.2017.09.016. [16] TURNBULL A V, RIVIER C L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action[J]. Physiol Rev, 1999, 79(1): 1-71. DOI: 10.1152/physrev.1999.79.1.1. [17] STRANDWITZ P, KIM K H, TEREKHOVA D, et al. GABA-modulating bacteria of the human gut microbiota[J]. Nat Microbiol 2019, 4(3): 396-403. DOI: 0.1038/s41564-018-0307-3 [18] SIVAPRAKASAM S, PRASAD P D, SINGH N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther, 2016, 164: 144-151. DOI: 10.1016/j.pharmthera.2016.04.007. [19] HAASE S, HAGHIKIA A, WILCK N, et al. Impacts of microbiome metabolites on immune regulation and autoimmunity[J]. Immunology, 2018, 154(2): 230-238. DOI: 10.1111/imm.12933. [20] SADLER R, CRAMER J V, HEINDL S, et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms[J]. J Neurosci, 2020, 40(5): 1162-1173. DOI: 10.1523/JNEUROSCI.1359-19.2019. [21] QIU L, TAO X Y, XIONG H, et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice[J]. Food Funct, 2018, 9(8): 4299-4309. DOI: 10.1039/c8fo00349a. [22] FEDOTCHEVA N, OLENIN A, BELOBORODOVA N. Influence of microbial metabolites on the nonspecific permeability of mitochondrial membranes under conditions of acidosis and loading with calcium and iron ions[J]. Biomedicines, 2021, 9(5): 558. DOI: 10.3390/biomedicines9050558. [23] DIN A U, HASSAN A, ZHU Y, et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol, 2019, 103(23/24): 9217-9228. DOI: 10.1007/s00253-019-10142-4. [24] BOINI K M, HUSSAIN T, LI P L, et al. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem, 2017, 44(1): 152-162. DOI: 10.1159/000484623. [25] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9: 3294. DOI: 10.1038/s41467-018-05470-4. [26] WLODARSKA M, LUO C W, KOLDE R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37. DOI: 10.1016/j.chom.2017.06.007. [27] ARYA A K, HU B R. Brain-gut axis after stroke[J]. Brain Circ, 2018, 4(4): 165-173. DOI: 10.4103/bc.bc_32_18. [28] BANKS W A, GRAY A M, ERICKSON M A, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit[J]. J Neuroinflammation, 2015, 12: 223. DOI: 10.1186/s12974-015-0434-1. [29] HOYLES L, SNELLING T, UMLAI U K, et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier[J]. Microbiome, 2018, 6(1): 55. DOI: 10.1186/s40168-018-0439-y. [30] TANG A T, CHOI J P, KOTZIN J J, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations[J]. Nature, 2017, 545(7654): 305-310. DOI: 10.1038/nature22075. [31] LI N, WANG X C, SUN C C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients[J]. BMC Microbiol, 2019, 19(1): 191. DOI: 10.1186/s12866-019-1552-1. [32] STANLEY D, MASON L J, MACKIN K E, et al. Translocation and dissemination of commensal bacteria in post-stroke infection[J]. Nat Med, 2016, 22(11): 1277-1284. DOI: 10.1038/nm.4194. [33] SINGH V, SADLER R, HEINDL S, et al. The gut microbiome primes a cerebroprotective immune response after stroke[J]. J Cereb Blood Flow Metab, 2018, 38(8): 1293-1298. DOI: 10.1177/0271678X18780130. [34] KLEGERIS A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns[J]. Neural Regen Res, 2021, 16(3): 423-429. DOI: 10.4103/1673-5374.293134. [35] RUHNAU J, SCHULZE J, DRESSEL A, et al. Thrombosis, neuroinflammation, and poststroke infection: the multifaceted role of neutrophils in stroke[J]. J Immunol Res, 2017, 2017: 5140679. DOI: 10.1155/2017/5140679. [36] ZHOU K C, WU J Y, CHEN J, et al. Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells[J]. J Pharmacol Sci,2019, 139(1):15-22. DOI: 10.1016/j.jphs.2018.10.012. [37] XIONG X Y, LIU L, YANG Q W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke[J]. Prog Neurobiol, 2016, 142: 23-44. DOI: 10.1016/j.pneurobio.2016.05.001. [38] KRZYSZCZYK P, KANG H J, KUMAR S, et al. Anti-inflammatory effects of haptoglobin on LPS-stimulated macrophages: role of HMGB1 signaling and implications in chronic wound healing[J]. Wound Repair Regen, 2020, 28(4): 493-505. DOI: 10.1111/wrr.12814. [39] SHEN X Y, GAO Z K, HAN Y, et al. Activation and role of astrocytes in ischemic stroke[J].Front Cell Neurosci, 2021, 15: 755955. DOI: 10.3389/fncel.2021.755955. [40] BENAKIS C, BREA D, CABALLERO S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523. DOI: 10.1038/nm.4068. [41] ZHANG D H, REN J X, LUO Y, et al. T cell response in ischemic stroke: from mechanisms to translational insights[J]. Front Immunol, 2021, 12: 707972. DOI: 10.3389/fimmu.2021.707972. [42] HALWANI R, SULTANA A, VAZQUEZ-TELLO A, et al. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma[J]. J Asthma, 2017, 54(9): 893-904. DOI: 10.1080/02770903.2017.1283696. [43] WU Y J, LI J X, SHOU J Y, et al. Diverse functions and mechanisms of regulatory T cell in ischemic stroke[J]. Exp Neurol, 2021, 343: 113782. DOI: 10.1016/j.expneurol.2021.113782. [44] ITO M, KOMAI K, MISE-OMATA S, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery[J]. Nature, 2019, 565(7738): 246-250. DOI: 10.1038/s41586-018-0824-5. [45] MALONE K, AMU S, MOORE A C, et al. The immune system and stroke: from current targets to future therapy[J]. Immunol Cell Biol, 2019, 97(1): 5-16. DOI: 10.1111/imcb.12191. [46] DOYLE K P, QUACH L N, SOLÉ M, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke[J]. J Neurosci, 2015, 35(5): 2133-2145. DOI: 10.1523/JNEUROSCI.4098-14.2015. [47] SHICHITA T, SUGIYAMA Y, OOBOSHI H, et al. Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury[J]. Nat Med, 2009, 15(8): 946-950. DOI: 10.1038/nm.1999. |