Journal of Hebei Medical College for Continuing Education ›› 2025, Vol. 42 ›› Issue (6): 1-14.DOI: 10.3969/j.issn.1674-490X.2025.06.001
WU Ting,ZHOU Yue
Received:2025-10-11
Published:2025-12-31
CLC Number:
WU Ting,ZHOU Yue. Advances on ferroptosis in hematological malignancies[J]. Journal of Hebei Medical College for Continuing Education, 2025, 42(6): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2025.06.001
| [1] ZHANG N, WU J X, WANG Q, et al. Global burden of hematologic malignancies and evolution patterns over the past 30 years[J]. Blood Cancer J, 2023, 13(1): 82. DOI: 10.1038/s41408-023-00853-3. [2] LICA J J, PRADHAN B, SAFI K, et al. Promising therapeutic strategies for hematologic malignancies: innovations and potential[J]. Molecules, 2024, 29(17): 4280. DOI: 10.3390/molecules29174280. [3] ZHOU Q, MENG Y, LI D S, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies[J]. Signal Transduct Target Ther, 2024, 9: 55. DOI: 10.1038/s41392-024-01769-5. [4] LIU Y, DU Z F, HUANG J B, et al. Ferroptosis in hematological malignant tumors[J]. Front Oncol, 2023, 13: 1127526. DOI: 10.3389/fonc.2023.1127526. [5] ZHANG J S, LIU Y X, LI Q, et al. Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism[J]. Biomed Pharmacother, 2022, 148: 112747. DOI: 10.1016/j.biopha.2022.112747. [6] NEWTON K, STRASSER A, KAYAGAKI N, et al. Cell death[J]. Cell, 2024, 187(2): 235-256. DOI: 10.1016/j.cell.2023.11.044. [7] SUN S M, SHEN J, JIANG J W, et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics[J]. Signal Transduct Target Ther, 2023, 8: 372. DOI: 10.1038/s41392-023-01606-1. [8] MOU Y H, WANG J, WU J C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1): 34. DOI: 10.1186/s13045-019-0720-y. [9] STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003. [10] FRAZER D M, ANDERSON G J. The regulation of iron transport[J]. Biofactors, 2014, 40(2): 206-214. DOI: 10.1002/biof.1148. [11] TANG D L, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. DOI: 10.1038/s41422-020-00441-1. [12] STOCKWELL B R, JIANG X J. The chemistry and biology of ferroptosis[J]. Cell Chem Biol, 2020, 27(4): 365-375. DOI: 10.1016/j.chembiol.2020.03.013. [13] LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2. [14] CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020-00462-0. [15] LATUNDE-DADA G O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. DOI: 10.1016/j.bbagen.2017.05.019. [16] LIU Y Q, GU W. p53 in ferroptosis regulation: the new weapon for the old guardian[J]. Cell Death Differ, 2022, 29(5): 895-910. DOI: 10.1038/s41418-022-00943-y. [17] JIANG L, KON N, LI T Y, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344. [18] OU Y, WANG S J, LI D W, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci USA, 2016, 113(44): E6806-E6812. DOI: 10.1073/pnas.1607152113 DOI:10.1073/pnas.1607152113. [19] HUANG H X, CHEN M, FENG S B, et al. The dual role of VDAC in cancer: molecular mechanisms and advances in targeted therapy[J]. Biomed Pharmacother, 2025, 191: 118530. DOI: 10.1016/j.biopha.2025.118530. [20] LIPPER C H, STOFLETH J T, BAI F, et al. Redox-dependent gating of VDAC by mitoNEET[J]. Proc Natl Acad Sci USA, 2019, 116(40): 19924-19929. DOI: 10.1073/pnas.1908271116. [21] ZHAO Y C, LI Y Q, ZHANG R F, et al. The role of erastin in ferroptosis and its prospects in cancer therapy[J]. OncoTargets Ther, 2020, 13: 5429-5441. DOI: 10.2147/OTT.S254995. [22] WANG X X, LI M, XU X W, et al. BNIP3-mediated mitophagy attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis through P62-KEAP1-NRF2 pathway activation to maintain iron and redox homeostasis[J]. Acta Pharmacol Sin, 2025, 46(1): 33-51. DOI: 10.1038/s41401-024-01365-x. [23] ZHU F, DAN T Q, HUA S G. KEAP1-NRF2/HO-1 pathway promotes ferroptosis and neuronal injury in schizophrenia[J]. Brain Behav, 2025, 15(3): e70311. DOI: 10.1002/brb3.70311. [24] CHANG L C, CHIANG S K, CHEN S E, et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis[J]. Cancer Lett, 2018, 416: 124-137. DOI: 10.1016/j.canlet.2017.12.025. [25] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042. [26] AQUILANO K, BALDELLI S, CIRIOLO M R. Glutathione: new roles in redox signaling for an old antioxidant[J]. Front Pharmacol, 2014, 5: 196. DOI: 10.3389/fphar.2014.00196. [27] CONRAD M, PRONETH B. Selenium: tracing another essential element of ferroptotic cell death[J]. Cell Chem Biol, 2020, 27(4): 409-419. DOI: 10.1016/j.chembiol.2020.03.012. [28] YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. DOI: 10.1016/j.cell.2013.12.010. [29] BERSUKER K, HENDRICKS J M, LI Z P, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2. [30] FUJITA T C, SOUSA-PEREIRA N, AMARANTE M K, et al. Acute lymphoid leukemia etiopathogenesis[J]. Mol Biol Rep, 2021, 48(1): 817-822. DOI: 10.1007/s11033-020-06073-3. [31] HSU W Y, WANG L T, LIN P C, et al. Deferasirox causes leukaemia cell death through Nrf2-induced ferroptosis[J]. Antioxidants, 2024, 13(4): 424. DOI: 10.3390/antiox13040424. [32] DOLL S, FREITAS F P, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. DOI: 10.1038/s41586-019-1707-0. [33] NIU F, YANG R Y, FENG H, et al. A GPX4 non-enzymatic domain and MDM2 targeting peptide PROTAC for acute lymphoid leukemia therapy through ferroptosis induction[J]. Biochem Biophys Res Commun, 2023, 684: 149125. DOI: 10.1016/j.bbrc.2023.149125. [34] ASHOUB M H, AMIRI M, FATEMI A, et al. Evaluation of ferroptosis-based anti-leukemic activities of ZnO nanoparticles synthesized by a green route against Pre-B acute lymphoblastic leukemia cells(Nalm-6 and REH)[J]. Heliyon, 2024, 10(17): e36608. DOI: 10.1016/j.heliyon.2024.e36608. [35] WANG Z L, CHEN X W, LIU N, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis[J]. Mol Ther, 2021, 29(1): 263-274. DOI: 10.1016/j.ymthe.2020.09.024. [36] LE Y, ZHU S C, PENG H L, et al. Unveiling the omics tapestry of B-acute lymphoblastic leukemia: bridging genomics, metabolomics, and immunomics[J]. Sci Rep, 2025, 15(1): 3188. DOI: 10.1038/s41598-025-87684-3. [37] TIAN C, ZHENG M, LAN X, et al. Silencing LCN2 enhances RSL3-induced ferroptosis in T cell acute lymphoblastic leukemia[J]. Gene, 2023, 879: 147597. DOI: 10.1016/j.gene.2023.147597. [38] TANG X. Prognostic value, biological role, and mechanisms of LCN2 in childhood acute lymphoblastic leukemia[J]. Am J Cancer Res, 2025, 15(4): 1759-1776. DOI: 10.62347/asrb7620. [39] LENG X, LIN H, DING T, et al. Lipocalin 2 is required for BCR-ABL-induced tumorigenesis[J]. Oncogene, 2008, 27(47): 6110-6119. DOI: 10.1038/onc.2008.209. [40] AKIYAMA H, ZHAO R, OSTERMANN L B, et al. Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia[J]. Leukemia, 2024, 38(4): 729-740. DOI: 10.1038/s41375-023-02117-2. [41] WEBER S, PARMON A, KURRLE N, et al. The clinical significance of iron overload and iron metabolism in myelodysplastic syndrome and acute myeloid leukemia[J]. Front Immunol, 2021, 11: 627662. DOI: 10.3389/fimmu.2020.627662. [42] DU J, WANG T T, LI Y C, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/j.freeradbiomed.2018.12.011. [43] WANG D, WANG F L, ZHANG H X, et al. Circadian clock protein Bmal1 accelerates acute myeloid leukemia by inhibiting ferroptosis through the EBF3/ALOX15 axis[J]. Cancer Sci, 2023, 114(8): 3446-3460. DOI: 10.1111/cas.15875. [44] ZHENG H, WU T, LIN Z, et al. Targeting BMAL1 reverses drug resistance of acute myeloid leukemia cells and promotes ferroptosis through HMGB1-GPX4 signaling pathway[J]. J Cancer Res Clin Oncol, 2024, 150(5): 231. DOI: 10.1007/s00432-024-05753-y. [45] KONG Q, LIANG Q X, TAN Y L, et al. Induction of ferroptosis by SIRT1 knockdown alleviates cytarabine resistance in acute myeloid leukemia by activating the HMGB1/ACSL4 pathway[J]. Int J Oncol, 2024, 66: 2. DOI: 10.3892/ijo.2024.5708. [46] ASHOUB M H, RAZAVI R, HEYDARYAN K, et al. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology[J]. Eur J Med Res, 2024, 29(1): 224. DOI: 10.1186/s40001-024-01822-7. [47] BIRSEN R, LARRUE C, DECROOCQ J, et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia[J]. Haematologica, 2022, 107(2): 403-416. DOI: 10.3324/haematol.2020.259531. [48] PENG X, ZHANG M Q Z, CONSERVA F, et al. APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase[J]. Cell Death Dis, 2013, 4(10): e881. DOI: 10.1038/cddis.2013.417. [49] ALI D, JÖNSSON-VIDESÄTER K, DENEBERG S, et al. APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells[J]. Eur J Haematol, 2011, 86(3): 206-215. DOI: 10.1111/j.1600-0609.2010.01557.x. [50] ZHONG S J, LIU X L, KANEKO T, et al. Peptide blockers of PD-1-PD-L1 interaction reinvigorate PD-1-suppressed T cells and curb tumor growth in mice[J]. Cells, 2024, 13(14): 1193. DOI: 10.3390/cells13141193. [51] ZAROBKIEWICZ M K, BOJARSKA-JUNAK A A. The mysterious actor-γδ T lymphocytes in chronic lymphocytic leukaemia(CLL)[J]. Cells, 2022, 11(4): 661. DOI: 10.3390/cells11040661. [52] EIKEN A P, SCHMITZ E, DRENGLER E M, et al. The novel anti-cancer agent, SpiD3, is cytotoxic in CLL cells resistant to ibrutinib or venetoclax[J]. Hemato, 2024, 5(3): 321-339. DOI: 10.3390/hemato5030024. [53] NARDI F, DEL PRETE R, DRAGO R, et al. Apoliprotein E-mediated ferroptosis controls cellular proliferation in chronic lymphocytic leukemia[J]. Leukemia, 2025, 39(1): 122-133. DOI: 10.1038/s41375-024-02442-0. [54] GONG H, LI H, YANG Q, et al. A ferroptosis molecular subtype-related signature for predicting prognosis and response to chemotherapy in patients with chronic lymphocytic leukemia[J]. Bio Med Res Int, 2022, 2022(1): 5646275. DOI: 10.1155/2022/5646275. [55] PAN B H, LI Y, XU Z D, et al. Identifying a novel ferroptosis-related prognostic score for predicting prognosis in chronic lymphocytic leukemia[J]. Front Immunol, 2022, 13: 962000. DOI: 10.3389/fimmu.2022.962000. [56] ZHAO Y, HUANG Z N, PENG H L. Molecular mechanisms of ferroptosis and its roles in hematologic malignancies[J]. Front Oncol, 2021, 11: 743006. DOI: 10.3389/fonc.2021.743006. [57] SCHMITZ E, RIDOUT A, SMITH A L, et al. Immunogenic cell death traits emitted from chronic lymphocytic leukemia cells following treatment with a novel anti-cancer agent, SpiD3[J]. Biomedicines, 2024, 12(12): 2857. DOI: 10.3390/biomedicines12122857. [58] WANG W M, GREEN M, CHOI J E, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. DOI: 10.1038/s41586-019-1170-y. [59] LIU X, ROTHE K, YEN R, et al. A novel AHI-1-BCR-ABL-DNM2 complex regulates leukemic properties of primitive CML cells through enhanced cellular endocytosis and ROS-mediated autophagy[J]. Leukemia, 2017, 31(11): 2376-2387. DOI: 10.1038/leu.2017.108. [60] ZENG C W, NIE D R, WANG X F, et al. Combined targeting of GPX4 and BCR-ABL tyrosine kinase selectively compromises BCR-ABL+leukemia stem cells[J]. Mol Cancer, 2024, 23(1): 240. DOI: 10.1186/s12943-024-02162-0. [61] LIU S H, WU W, CHEN Q Q, et al. TXNRD1: a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro[J]. Oxid Med Cell Longev, 2021, 2021: 7674565. DOI: 10.1155/2021/7674565. [62] ZHU M, ZHAO Y Q, XU L, et al. Mn-Zn ferrite nanoparticles inducing ferroptosis to reverse the resistance in CML cells[J]. J Transl Med, 2025, 23(1): 1071. DOI: 10.1186/s12967-025-07107-9. [63] CUI Y Q, LI Y T, JI J M, et al. Dynamic Single-Cell RNA-Seq reveals mechanism of Selinexor-Resistance in chronic myeloid leukemia[J]. Int Immunopharmacol, 2024, 134: 112212. DOI: 10.1016/j.intimp.2024.112212. [64] KAZANDJIAN D. Multiple myeloma epidemiology and survival: a unique malignancy[J]. Semin Oncol, 2016, 43(6): 676-681. DOI: 10.1053/j.seminoncol.2016.11.004. [65] CHEN C, HE L, WANG X, et al. Leonurine promotes the maturation of healthy donors and multiple myeloma patients derived-dendritic cells via the regulation on arachidonic acid metabolism[J]. Front Pharmacol, 2023, 14: 1104403. DOI: 10.3389/fphar.2023.1104403. [66] PANARONI C, FULZELE K, MORI T, et al. Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins[J]. Blood, 2022, 139(6): 876-888. DOI: 10.1182/blood.2021013832. [67] JIANG H M, WANG L J, ZHANG Q G, et al. Bone marrow stromal cells dictate lanosterol biosynthesis and ferroptosis of multiple myeloma[J]. Oncogene, 2024, 43(21): 1644-1653. DOI: 10.1038/s41388-024-03020-5. [68] LIU X, XU P P, WANG L L, et al. Cholesterol levels provide prognostic information in patients with multiple myeloma[J]. Clin Lab, 2020, 66(4). DOI: 10.7754/Clin.Lab.2019.190824. [69] XIAN M, WANG Q, XIAO L L, et al. Leukocyte immunoglobulin-like receptor B1(LILRB1)protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis[J]. Nat Commun, 2024, 15: 5767. DOI: 10.1038/s41467-024-50073-x. [70] BORDINI J, MORISI F, CERRUTI F, et al. Iron causes lipid oxidation and inhibits proteasome function in multiple myeloma cells: a proof of concept for novel combination therapies[J]. Cancers, 2020, 12(4): 970. DOI: 10.3390/cancers12040970. [71] ZHANG Y Y, HE F, HU W, et al. Bortezomib elevates intracellular free Fe(2+)by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 to inhibit multiple myeloma cells[J]. Ann Hematol, 2024, 103(9): 3627-3637. DOI: 10.1007/s00277-024-05762-4. [72] ZHANG J S, LIU Y X, LI Q, et al. ACSL4: a double-edged sword target in multiple myeloma, promotes cell proliferation and sensitizes cell to ferroptosis[J]. Carcinogenesis, 2023, 44(3): 242-251. DOI: 10.1093/carcin/bgad015. [73] PETZER V, THEURL I, WEISS G, et al. EnvIRONmental aspects in myelodysplastic syndrome[J]. Int J Mol Sci, 2021, 22(10): 5202. DOI: 10.3390/ijms22105202. [74] YANG Y F, HAN J P, WEI Y X, et al. Research progress on ferroptosis in Myelodysplastic syndromes[J]. Front Pharmacol, 2025, 16: 1561072. DOI: 10.3389/fphar.2025.1561072. [75] YANG L Y, ZHANG M Y, LIU M Y, et al. Loss of FTH1 induces ferritinophagy-mediated ferroptosis in anaemia of myelodysplastic syndromes[J]. J Cell Mol Med, 2025, 29(1): e70350. DOI:10.1111/jcmm.70350. [76] LIU W, WU M, HUANG Z, et al. C-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish[J]. Leukemia, 2017, 31(1): 222-233. DOI: 10.1038/leu.2016.170. [77] LIU L, YANG C Y, ZHU L, et al. RSL3 enhances ROS-mediated cell apoptosis of myelodysplastic syndrome cells through MYB/Bcl-2 signaling pathway[J]. Cell Death Dis, 2024, 15(7): 465. DOI: 10.1038/s41419-024-06866-5. [78] MAGINA K N, PREGARTNER G, ZEBISCH A, et al. Cytarabine dose in the consolidation treatment of AML: a systematic review and meta-analysis[J]. Blood, 2017, 130(7): 946-948. DOI: 10.1182/blood-2017-04-777722. [79] LV Q, NIU H Y, YUE L Z, et al. Abnormal ferroptosis in myelodysplastic syndrome[J]. Front Oncol, 2020, 10: 1656. DOI: 10.3389/fonc.2020.01656. [80] TAKAHARA T, NAKAMURA S, TSUZUKI T, et al. The immunology of DLBCL[J]. Cancers, 2023, 15(3): 835. DOI: 10.3390/cancers15030835. [81] BIAN W X, LI H R, CHEN Y H, et al. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL[J]. Biomed Pharmacother, 2024, 173: 116386. DOI: 10.1016/j.biopha.2024.116386. [82] KOTKARANTA P, CHAN M, VUOLIO T, et al. DLBCL cells with ferroptosis morphology can be detected with a deep convolutional neural network[J]. Biomed Pharmacother, 2025, 182: 117785. DOI: 10.1016/j.biopha.2024.117785. [83] MASNIKOSA R, CVETKOVIC' Z, PIRIC' D. Tumor biology hides novel therapeutic approaches to diffuse large B-cell lymphoma: a narrative review[J]. Int J Mol Sci, 2024, 25(21): 11384. DOI: 10.3390/ijms252111384. [84] SCHMITT A, XU W D, BUCHER P, et al. Research progress on ferroptosis in Myelodysplastic syndromes[J]. Blood, 2021, 138(10): 871-884. DOI: 10.1182/blood.2020009404. [85] ZHANG S X, WANG J, HUANG G X, et al. TCP1 expression alters the ferroptosis sensitivity of diffuse large B-cell lymphoma subtypes by stabilising ACSL4 and influences patient prognosis[J]. Cell Death Dis, 2024, 15: 611. DOI: 10.1038/s41419-024-07001-0. [86] XIONG D, GENG C J, ZENG L Y, et al. Artesunate induces ferroptosis by regulating MT1G and has an additive effect with doxorubicin in diffuse large B-cell lymphoma cells[J]. Heliyon, 2024, 10(7): e28584. DOI: 10.1016/j.heliyon.2024.e28584. [87] ZHANG Y, TAN H, DANIELS J D, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model[J]. Cell Chem Biol, 2019, 26(5): 623-633. DOI: 10.1016/j.chembiol.2019.01.008. [88] KINOWAKI Y, KURATA M, ISHIBASHI S, et al. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma[J]. Lab Invest, 2018, 98(5): 609-619. DOI: 10.1038/s41374-017-0008-1. |
| [1] | . [J]. Medical Reserch and Education, 2020, 37(1): 1-6. |
| [2] | LI Li,GUO Xintong, CUI Yan,REN Yali,MA Ning,LI Xinbao,NIU Pei. The latest progress of treatment and reconstruction of energy metabolism in heart failure [J]. Medical Reserch and Education, 2015, 32(4): 44-49. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||