[1] ANDERSON J L, MORROW D A. Acute myocardial infarction[J]. N Engl J Med, 2017, 376(21): 2053-2064. DOI: 10.1056/NEJMra1606915. [2] HAUSENLOY D J, YELLON D M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest, 2013, 123(1): 92-100. DOI: 10.1172/JCI62874. [3] BØTKER H E, HAUSENLOY D, ANDREADOU I, et al. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection[J]. Basic Res Cardiol, 2018, 113(5): 39. DOI: 10.1007/s00395-018-0696-8. [4] DE JONG R C M, PLUIJMERT N J, DE VRIES M R, et al. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response[J]. Sci Rep, 2018, 8(1): 6753. DOI: 10.1038/s41598-018-25143-y. [5] LESNEFSKY E J, CHEN Q, TANDLER B, et al. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 535-565. DOI: 10.1146/annurev-pharmtox-010715-103335. [6] GRANGER D N, KVIETYS P R. Reperfusion injury and reactive oxygen species: the evolution of a concept[J]. Redox Biol, 2015, 6: 524-551. DOI: 10.1016/j.redox.2015.08.020. [7] ONG S B, HERNÁNDEZ-RESÉNDIZ S, CRESPO-AVILAN G E, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87. DOI: 10.1016/j.pharmthera.2018.01.001. [8] SWIRSKI F K, NAHRENDORF M. Cardioimmunology: the immune system in cardiac homeostasis and disease[J]. Nat Rev Immunol, 2018, 18(12): 733-744. DOI: 10.1038/s41577-018-0065-8. [9] KURIAN G A, RAJAGOPAL R, VEDANTHAM S, et al. the role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited[J]. Oxid Med Cell Longev, 2016, 2016: 1656450. DOI: 10.1155/2016/1656450. [10] BANU S A, RAVINDRAN S, KURIAN G A. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury[J]. Cell Stress Chaperones, 2016, 21(4): 571-582. DOI: 10.1007/s12192-016-0682-8. [11] KORGE P, JOHN S A, CALMETTES G, et al. Reactive oxygen species production induced by pore opening in cardiac mitochondria: the role of complex II[J]. J Biol Chem, 2017, 292(24): 9896-9905. DOI: 10.1074/jbc.M116.768325. [12] KOHLHAUER M, DAWKINS S, COSTA A S H, et al. Metabolomic profiling in acute ST-segment-elevation myocardial infarction identifies succinate as an early marker of human ischemia-reperfusion injury[J]. J Am Heart Assoc, 2018, 7(8): e007546. DOI: 10.1161/JAHA.117.007546. [13] PARADIS S, LEONI V, CACCIA C, et al. Cardioprotection by the TSPO ligand 4'-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion[J]. Cardiovasc Res, 2013, 98(3): 420-427. DOI: 10.1093/cvr/cvt079. [14] THACKERAY J T, HUPE H C, WANG Y, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction[J]. J Am Coll Cardiol, 2018, 71(3): 263-275. DOI: 10.1016/j.jacc.2017.11.024. [15] PARODI-RULLÁN R M, CHAPA-DUBOCQ X, RULLÁN P J, et al. Corrigendum: high sensitivity of SIRT3 deficient hearts to ischemia-reperfusion is associated with mitochondrial abnormalities[J]. Front Pharmacol, 2017, 8: 439. DOI: 10.3389/fphar.2017.00439. [16] BOYLSTON J A, SUN J H, CHEN Y, et al. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury[J]. J Mol Cell Cardiol, 2015, 88: 73-81. DOI: 10.1016/j.yjmcc.2015.09.005. [17] SLUIJTER J P, CONDORELLI G, DAVIDSON S M, et al. Novel therapeutic strategies for cardioprotection[J]. Pharmacol Ther, 2014, 144(1): 60-70. DOI: 10.1016/j.pharmthera.2014.05.005. [18] ZHANG W L, CHEN C Y, WANG J, et al. Mitophagy in cardiomyocytes and in platelets: a major mechanism of cardioprotection against ischemia/reperfusion injury[J]. Physiology(Bethesda), 2018, 33(2): 86-98. DOI: 10.1152/physiol.00030.2017. [19] ZHANG W L, SIRAJ S, ZHANG R, et al. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury[J]. Autophagy, 2017, 13(6): 1080-1081. DOI: 10.1080/15548627.2017.1300224. [20] CHOUCHANI E T, PELL V R, GAUDE E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J]. Nature, 2014, 515(7527): 431-435. DOI: 10.1038/nature13909. [21] VALLS-LACALLE L, BARBA I, MIRÓ-CASAS E, et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition[J]. Cardiovasc Res, 2016, 109(3): 374-384. DOI: 10.1093/cvr/cvv279. [22] BRADLEY J M, LI Z, ORGAN C L, et al. A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure[J]. Am J Physiol Heart Circ Physiol, 2018, 314(2): H311-H321. DOI: 10.1152/ajpheart.00515.2017. [23] CHANG C, JI Q W, WU B W, et al. Chemerin15-ameliorated cardiac ischemia-reperfusion injury is associated with the induction of alternatively activated macrophages[J]. Mediators Inflamm, 2015, 2015: 563951. DOI: 10.1155/2015/563951. [24] YUE Y, YANG X, FENG K N, et al. M2b macrophages reduce early reperfusion injury after myocardial ischemia in mice: a predominant role of inhibiting apoptosis via A20[J]. Int J Cardiol, 2017, 245: 228-235. DOI: 10.1016/j.ijcard.2017.07.085. [25] CANNA S W, GOLDBACH-MANSKY R. Introduction: autoinflammatory syndromes special issue-hidden mysteries in the corners of autoinflammation[J]. Int Immunol, 2018, 30(5): 181-182. DOI: 10.1093/intimm/dxy022. [26] SZYMANSKI A M, OMBRELLO M J. Using genes to triangulate the pathophysiology of granulomatous autoinflammatory disease: NOD2, PLCG2 and LACC1[J]. Int Immunol, 2018, 30(5): 205-213. DOI: 10.1093/intimm/dxy021. [27] GOLDSMITH J R, CHEN Y H. Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins[J]. Cell Mol Immunol, 2017, 14(12): 1026. DOI: 10.1038/cmi.2017.127. [28] ROSSELLO X, RIQUELME J A, DAVIDSON S M, et al. Role of PI3K in myocardial ischaemic preconditioning: mapping pro-survival cascades at the trigger phase and at reperfusion[J]. J Cell Mol Med, 2018, 22(2): 926-935. DOI: 10.1111/jcmm.13394. [29] LIU Y, YANG H, LIU L X, et al. NOD2 contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and inflammation[J]. Life Sci, 2016, 149: 10-17. DOI: 10.1016/j.lfs.2016.02.039. [30] PARAPANOV R, LUGRIN J, ROSENBLATT-VELIN N, et al. Toll-like receptor 5 deficiency exacerbates cardiac injury and inflammation induced by myocardial ischaemia-reperfusion in the mouse[J]. Clin Sci, 2015, 129(2): 187-198. DOI: 10.1042/CS20140444. [31] HAMID T, PRABHU S D. Immunomodulation is the key to cardiac repair[J]. Circ Res, 2017, 120(10): 1530-1532. DOI: 10.1161/CIRCRESAHA.117.310954. [32] XIA N, JIAO J, TANG T T, et al. Activated regulatory T-cells attenuate myocardial ischaemia/reperfusion injury through a CD39-dependent mechanism[J]. Clin Sci, 2015, 128(10): 679-693. DOI: 10.1042/CS20140672. [33] RAMJEE V, LI D Q, MANDERFIELD L J, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction[J]. J Clin Invest, 2017, 127(3): 899-911. DOI: 10.1172/JCI88759. [34] FANG J, HU F D, KE D, et al. N, N-dimethylsphingosine attenuates myocardial ischemia-reperfusion injury by recruiting regulatory T cells through PI3K/Akt pathway in mice[J]. Basic Res Cardiol, 2016, 111(3): 32. DOI: 10.1007/s00395-016-0548-3. [35] GOLTZ D, HUSS S, RAMADORI E, et al. Immunomodulation by splenectomy or by FTY720 protects the heart against ischemia reperfusion injury[J]. Clin Exp Pharmacol Physiol, 2015, 42(11): 1168-1177. DOI: 10.1111/1440-1681.12465. [36] HEUSCH G, GERSH B J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge[J]. Eur Heart J, 2017, 38(11): 774-784. DOI: 10.1093/eurheartj/ehw224. [37] RIZK F H, ABDEL GHAFAR M T, SOLIMAN N A, et al. Vildagliptin recruits regulatory T cells in patients undergoing primary percutaneous coronary intervention[J]. Immunol Invest, 2018, 47(6): 583-592. DOI: 10.1080/08820139.2018.1467927. [38] MOFID A, NEWMAN N S, LEE P J, et al. Cardiac overexpression of S100A6 attenuates cardiomyocyte apoptosis and reduces infarct size after myocardial ischemia-reperfusion[J]. J Am Heart Assoc, 2017, 6(2): e004738. DOI: 10.1161/JAHA.116.004738. [39] DE JONG R C M, PLUIJMERT N J, DE VRIES M R, et al. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response[J]. Sci Rep, 2018, 8(1): 6753. DOI: 10.1038/s41598-018-25143-y. [40] ZOU R J, SHI W T, TAO J, et al. SIRT5 and post-translational protein modifications: a potential therapeutic target for myocardial ischemia-reperfusion injury with regard to mitochondrial dynamics and oxidative metabolism[J]. Eur J Pharmacol, 2018, 818: 410-418. DOI: 10. 1016/j.ejphar.2017.11.005. |