[1] SONG J H, CHAUDHRY F S, MAYO-SMITH W W. The incidental adrenal mass on CT: prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy[J].AJR Am J Roentgenol, 2008, 190(5):1163-1168. DOI: 10.2214/AJR.07.2799. [2] LOW G, SAHI K. Clinical and imaging overview of functional adrenal neoplasms[J]. Int J Urol, 2012, 19(8):697-708. DOI: 10.1111/j.1442-2042.2012.03014.x. [3] 王文红,白人驹,孙浩然,等.良、恶性乏脂质性肾上腺肿瘤的动态MRI检查[J].医学影像学杂志, 2009, 19(11): 1426-1429. DOI: 10.3969/j.issn.1006-9011.2009.11.020. [4] LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141. [5] 刘再毅,梁长虹.影像组学研究浅见[J].影像诊断与介入放射学, 2017, 26(3): 253-254. DOI: 10.3969/j.issn.1005-8001.2017.00.019. [6] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036. [7] FEDOROV A, BEICHEL R, KALPATHY-CRAMER J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9): 1323-1341. DOI: 10.1016/j.mri.2012.05.001. [8] WOLF I, VETTER M, WEGNER I, et al. The medical imaging interaction toolkit[J]. Med Image Anal, 2005, 9(6): 594-604. DOI: 10.1016/j.media.2005.04.005. [9] 李双双,侯震,刘娟,等.影像组学分析与建模工具综述[J].中国医学物理学杂志, 2018, 35(9): 1043-1049. DOI: 10.3969/j.issn.1005-202X.2018.09.010. [10] DINNES J, BANCOS I, FERRANTE DIRUFFANO L, et al. Management of endocrine disease: imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: a systematic review and meta-analysis[J]. Eur J Endocrinol, 2016, 175(2): R51-R64. DOI: 10.1530/EJE-16-0461. [11] ELBANAN M G, JAVADI S, GANESHAN D, et al. Adrenal cortical adenoma: current update, imaging features, atypical findings, and mimics[J]. Abdom Radiol(NY), 2020, 45(4): 905-916. DOI: 10.1007/s00261-019-02215-9. [12] 闫海波.双源CT在鉴别诊断肾上腺乏脂肪腺瘤、小转移瘤中的应用价值[J].中国CT和MRI杂志, 2020, 18(2): 106-108, 112. DOI: 10.3969/j.issn.1672-5131.2020.02.032. [13] YI X P, GUAN X, CHEN C, et al. Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma[J]. J Cancer, 2018, 9(19): 3577-3582. DOI: 10.7150/jca.26356. [14] LOTFI C F P, KREMER J L, DOS SANTOS PASSAIA B, et al. The human adrenal cortex: growth control and disorders[J]. Clinics(Sao Paulo), 2018, 73(Suppl 1): e473s. DOI: 10.6061/clinics/2018/e473s. [15] KLINE G, HOLMES D T. Adrenal venous sampling for primaryaldosteronism: laboratory medicine best practice[J]. Clin Pathol, 2017, 70: 911-16. DOI: 10.1136/jclinpath-2017-204423. [16] ZHENG Y N, LIU X, ZHONG Y, et al. A preliminary study for distinguish hormone-secreting functional adrenocortical adenoma subtypes using multiparametric CT radiomics-based machine learning model and nomogram[J]. Front Oncol, 2020, 10: 570502. DOI: 10.3389/fonc.2020.570502. [17] BAO M Y, ZHANG L H, HU Y Q. Novel gene signatures for prognosis prediction in ovarian cancer[J]. J Cell Mol Med, 2020, 24(17): 9972-9984. DOI: 10.1111/jcmm.15601. [18] HE K, ZHANG Z T, WANG Z H, et al. A clinical-radiomic nomogram based on unenhanced computed tomography for predicting the risk of aldosterone-producing adenoma[J]. Front Oncol, 2021, 11: 634879. DOI: 10.3389/fonc.2021.634879. [19] STANZIONE A, CUOCOLO R, VERDE F, et al. Handcrafted MRI radiomics and machine learning: classification of indeterminate solid adrenal lesions[J]. Magn Reson Imaging, 2021, 79: 52-58. DOI: 10.1016/j.mri.2021.03.009. [20] TORRESAN F, CRIMÌ F, CECCATO F, et al. Radiomics: a new tool to differentiate adrenocortical adenoma from carcinoma[J]. BJS Open, 2021, 5(1): zraa061. DOI: 10.1093/bjsopen/zraa061. [21] HO L M, SAMEI E, MAZUROWSKI M A, et al. Can texture analysis be used to distinguish benign from malignant adrenal nodules on unenhanced CT, contrast-enhanced CT, or in-phase and opposed-phase MRI?[J].AJR Am J Roentgenol, 2019, 212(3): 554-561. DOI: 10.2214/AJR.18.20097. [22] ELMOHR M M, FUENTES D, HABRA M A, et al. Machine learning-based texture analysis for differentiation of large adrenal cortical tumours on CT[J]. Clin Radiol, 2019, 74(10): 818.e1-818.e7. DOI: 10.1016/j.crad.2019.06.021. [23] ROMEO V, MAUREA S, CUOCOLO R, et al. Characterization of adrenal lesions on unenhanced MRI usingtexture analysis: a machine-learning approach[J].Magn Reson Imaging, 2018, 48(1): 198-204. DOI: 10.1002/jmri.25954. [24] SHI B, ZHANG G M, XU M, et al. Distinguishing metastases from benign adrenal masses:whatcan CT texture analysis do?[J]. Acta Radiol, 2019, 60(11): 1553-1561. DOI: 10.1177/0284185119830292. [25] ANSQUER C, DRUI D, MIRALLIE E, et al. Usefulness of FDG-PET/CT-based radiomics for the characterization and genetic orientation of pheochromocytomas before surgery[J]. Cancers(Basel), 2020, 12(9): 2424. DOI: 10.3390/cancers12092424. [26] ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145. [27] YI X P, GUAN X, ZHANG Y M, et al. Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma: a predictive, preventive and personalized medical approach in adrenal incidentalomas[J]. EPMA J, 2018, 9(4): 421-429. DOI: 10.1007/s13167-018-0149-3. [28] GOLUBNITSCHAJA O, BABAN B, BONIOLO G, et al. Medicine in the early twenty-first century: paradigm and anticipation:EPMA position paper 2016[J]. EPMA J, 2016, 7(1): 23. DOI: 10.1186/s13167-016-0072-4. [29] ALIC L, NIESSEN W J, VEENLAND J F. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review[J]. PLoS One, 2014, 9(10): e110300. DOI: 10.1371/journal.pone.0110300. [30] SALA E, MEMA E, HIMOTO Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging[J]. Clin Radiol, 2017, 72(1): 3-10. DOI: 10.1016/j.crad.2016.09.013. [31] LAMBIN P, VANSTIPHOUT R G, STARMANS M H,et al. Predicting outcomes in radiation oncology-multifactorial decision support systems[J]. Nat Rev Clin Oncol, 2013, 10(1):27-40. DOI: 10.1038/nrclinonc.2012.196. |