[1] HAMEED B M Z, DHAVILESWARAPU A V L S, NAIK N, et al. Big Data Analytics in Urology: the story so far and the road ahead[J]. Ther Adv Urol, 2021, 13: 1756287221998134. DOI: 10.1177/1756287221998134. [2] PEDERSEN A B, MIKKELSEN E M, CRONIN-FENTON D, et al. Missing data and multiple imputation in clinical epidemiological research[J]. Clin Epidemiol, 2017, 9: 157-166. DOI: 10.2147/CLEP.S129785. [3] HE J X, BAXTER S L, XU J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1): 30-36. DOI: 10.1038/s41591-018-0307-0. [4] LAWRENCE D R, PALACIOS-GONZÁLEZ C, HARRIS J. Artificial intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2): 250-261. DOI: 10.1017/s0963180115000559. [5] GOLDENBERG S L, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403. DOI: 10.1038/s41585-019-0193-3. [6] HASHIMOTO D A, WITKOWSKI E, GAO L, et al. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations[J]. Anesthesiology, 2020, 132(2): 379-394. DOI: 10.1097/ALN.0000000000002960. [7] HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5. [8] DEO R C. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI: 10.1161/CIRCULATIONAHA.115.001593. [9] HANDELMAN G S, KOK H K, CHANDRA R V, et al. eDoctor: machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6): 603-619. DOI: 10.1111/joim.12822. [10] BA?瘙塁TANLAR Y, OZUYSAL M. Introduction to machine learning[J]. Methods Mol Biol, 2014, 1107: 105-128. DOI: 10.1007/978-1-62703-748-8_7. [11] SHAMEER K, JOHNSON K W, GLICKSBERG B S, et al. Machine learning in cardiovascular medicine: are we there yet? [J]. Heart, 2018, 104(14): 1156-1164. DOI: 10.1136/heartjnl-2017-311198. [12] JOHNSON K W, TORRESSOTO J, GLICKSBERG B S, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-2679. DOI: 10.1016/j.jacc.2018.03.521. [13] LIN J Y, CHEN H, LI S, et al. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier[J]. Artif Intell Med, 2019, 98: 35-47. DOI: 10.1016/j.artmed.2019.07.005. [14] EKEN C, BILGE U, KARTAL M, et al. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings[J]. Int J Emerg Med, 2009, 2(2): 99-105. DOI: 10.1007/s12245-009-0103-1. [15] KOBAYASHI M, ISHIOKA J, MATSUOKA Y, et al. Computer-aided diagnosis with a convolutional neural network algorithm for automated detection of urinary tract stones on plain X-ray[J]. BMC Urol, 2021, 21(1): 102. DOI: 10.1186/s12894-021-00874-9. [16] SELVARANI S, RAJENDRAN P. Detection of renal calculi in ultrasound image using meta-heuristic support vector machine[J]. J Med Syst, 2019, 43(9): 300. DOI: 10.1007/s10916-019-1407-1. [17] NITHYA A, APPATHURAI A, VENKATADRI N, et al. Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images[J]. Measurement, 2020, 149: 106952. DOI: 10.1016/j.measurement.2019.106952. [18] SUDHARSON S, KOKIL P. An ensemble of deep neural networks for kidney ultrasound image classification[J]. Comput Methods Programs Biomed, 2020, 197: 105709. DOI: 10.1016/j.cmpb.2020.105709. [19] LÄNGKVIST M, JENDEBERG J, THUNBERG P, et al. Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks[J]. Comput Biol Med, 2018, 97: 153-160. DOI: 10.1016/j.compbiomed.2018.04.021. [20] PARAKH A, LEE H, LEE J H, et al. Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization[J]. Radiol Artif Intell, 2019, 1(4): e180066. DOI: 10.1148/ryai.2019180066. [21] CUI Y P, SUN Z N, MA S, et al. Automatic detection and scoring of kidney stones on noncontrast CT images using S.T.O.N.E. nephrolithometry: combined deep learning and thresholding methods[J]. Mol Imaging Biol, 2021, 23(3): 436-445. DOI: 10.1007/s11307-020-01554-0. [22] YILDIRIM K, BOZDAG P G, TALO M, et al. Deep learning model for automated kidney stone detection using coronal CT images[J]. Comput Biol Med, 2021, 135: 104569. DOI: 10.1016/j.compbiomed.2021.104569. [23] DE PERROT T, HOFMEISTER J, BURGERMEISTER S, et al. Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning[J]. Eur Radiol, 2019, 29(9): 4776-4782. DOI: 10.1007/s00330-019-6004-7. [24] JENDEBERG J, THUNBERG P, LIDÉN M. Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network[J]. Urolithiasis, 2021, 49(1): 41-49. DOI: 10.1007/s00240-020-01180-z. [25] CUI X Y, ZHAO Z Y, ZHANG G J, et al. Analysis and classification of kidney stones based on Raman spectroscopy[J]. Biomed Opt Express, 2018, 9(9): 4175-4183. DOI: 10.1364/BOE.9.004175. [26] SAÇLI B, AYDINALP C, CANSIZ G, et al. Microwave dielectric property based classification of renal calculi: application of a kNN algorithm[J]. Comput Biol Med, 2019, 112: 103366. DOI: 10.1016/j.compbiomed.2019.103366. [27] BLANCO F, LÓPEZ-MESAS M, SERRANTI S, et al. Hyperspectral imaging based method for fast characterization of kidney stone types[J]. J Biomed Opt, 2012, 17(7): 076027. DOI: 10.1117/1.JBO.17.7.076027. [28] KAZEMI Y, MIRROSHANDEL S A. A novel method for predicting kidney stone type using ensemble learning[J]. Artif Intell Med, 2018, 84: 117-126. DOI: 10.1016/j.artmed.2017.12.001. [29] KRIEGSHAUSER J S, SILVA A C, PADEN R G, et al. Ex vivo renal stone characterization with single-source dual-energy computed tomography: amultiparametric approach[J]. Acad Radiol, 2016, 23(8): 969-976. DOI: 10.1016/j.acra.2016.03.009. [30] KRIEGSHAUSER J S, PADEN R G, HE M, et al. Rapid kV-switching single-source dual-energy CT ex vivo renal calculi characterization using a multiparametric approach: refining parameters on an expanded dataset[J]. Abdom Radiol(NY), 2018, 43(6): 1439-1445. DOI: 10.1007/s00261-017-1331-0. [31] GROβE HOKAMP N, LENNARTZ S, SALEM J, et al. Dose independent characterization of renal stones by means of dual energy computed tomography and machine learning: an ex-vivo study[J]. Eur Radiol, 2020, 30(3): 1397-1404. DOI: 10.1007/s00330-019-06455-7. [32] FITRI L A, HARYANTO F, ARIMURA H, et al. Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network[J]. Phys Med, 2020, 78: 201-208. DOI: 10.1016/j.ejmp.2020.09.007. [33] ZHANG G M, SUN H, SHI B, et al. Uric acid versus non-uric acid urinary stones: differentiation with single energy CT texture analysis[J]. Clin Radiol, 2018, 73(9): 792-799. DOI: 10.1016/j.crad.2018.04.010. [34] BLACK K M, LAW H, ALDOUKHI A, et al. Deep learning computer vision algorithm for detecting kidney stone composition[J]. BJU Int, 2020, 125(6): 920-924. DOI: 10.1111/bju.15035. [35] ESTRADE V, DAUDON M, RICHARD E, et al. Towards automatic recognition of pure and mixed stones using intra-operative endoscopic digital images[J]. BJU Int, 2022, 129(2): 234-242. DOI: 10.1111/bju.15515. [36] SOLAKHAN M, SECKINER S U, SECKINER I. A neural network-based algorithm for predicting the spontaneous passage of ureteral stones[J]. Urolithiasis, 2020, 48(6): 527-532. DOI: 10.1007/s00240-019-01167-5. [37] PARK J S, KIM D W, LEE D, et al. Development of prediction models of spontaneous ureteral stone passage through machine learning: comparison with conventional statistical analysis[J]. PLoS One, 2021, 16(12): e0260517. DOI: 10.1371/journal.pone.0260517. [38] MOORTHY K, KRISHNAN M. Prediction of fragmentation of kidney stones: a statistical approach from NCCT images[J]. Can Urol Assoc J, 2016, 10(7/8): E237-E240. DOI: 10.5489/cuaj.3674. [39] MANNIL M, VON SPICZAK J, HERMANNS T, et al. Prediction of successful shock wave lithotripsy with CT: a phantom study using texture analysis[J]. Abdom Radiol(NY), 2018, 43(6): 1432-1438. DOI: 10.1007/s00261-017-1309-y. [40] MANNIL M, VON SPICZAK J, HERMANNS T, et al. Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones[J]. J Urol, 2018, 200(4): 829-836. DOI: 10.1016/j.juro.2018.04.059. [41] SECKINER I, SECKINER S, SEN H, et al. A neural network-based algorithm for predicting stone-free status after ESWL therapy[J]. Int Braz J Urol, 2017, 43(6): 1110-1114. DOI: 10.1590/S1677-5538.IBJU.2016.0630. [42] CHOO M S, UHMN S, KIM J K, et al. A prediction model using machine learning algorithm for assessing stone-free status after single session shock wave lithotripsy to treat ureteral stones[J].J Urol, 2018, 200(6): 1371-1377. DOI: 10.1016/j.juro.2018.06.077. [43] YANG S W, HYON Y K, NA H S, et al. Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy[J]. BMC Urol, 2020, 20(1): 88. DOI: 10.1186/s12894-020-00662-x. [44] HANDA R K, TERRITO P R, BLOMGREN P M, et al. Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury[J]. Urolithiasis, 2017, 45(5): 507-513. DOI: 10.1007/s00240-016-0959-5. [45] SHABANIYAN T, PARSAEI H, AMINSHARIFI A, et al. An artificial intelligence-based clinical decision support system for large kidney stone treatment[J]. Australas Phys Eng Sci Med, 2019, 42(3): 771-779. DOI: 10.1007/s13246-019-00780-3. [46] AMINSHARIFI A, IRANI D, POOYESH S, et al. Artificial neural network system to predict the postoperative outcome of percutaneous nephrolithotomy[J]. J Endourol, 2017, 31(5): 461-467. DOI: 10.1089/end.2016.0791. [47] AMINSHARIFI A, IRANI D, TAYEBI S, et al. Predicting the postoperative outcome of percutaneous nephrolithotomy with machine learning system: software validation and comparative analysis with guy's stone score and the CROES nomogram[J]. J Endourol, 2020, 34(6): 692-699. DOI: 10.1089/end.2019.0475. [48] MULLER S, ABILDSNES H, ØSTVIK A, et al. Can a dinosaur think? Implementation of artificial intelligence in extracorporeal shock wave lithotripsy[J]. Eur Urol Open Sci, 2021, 27: 33-42. DOI: 10.1016/j.euros.2021.02.007. [49] SHOAR K, TURNEY B W, CLEVELAND R O. Tracking kidney stones in a homogeneous medium using a trilateration approach[J]. J Acoust Soc Am, 2017, 142(6): 3715. DOI: 10.1121/1.5017718. [50] FU Z M, JIN Z Y, ZHANG C A, et al. Visual-electromagnetic system: a novel fusion-based monocular localization, reconstruction, and measurement for flexible ureteroscopy[J]. Int J Med Robot, 2021, 17(4): e2274. DOI: 10.1002/rcs.2274. [51] TAGUCHI K, HAMAMOTO S, OKADA A, et al. Robot-assisted fluoroscopy versus ultrasound-guided renal access for nephrolithotomy: aphantom model benchtop study[J]. J Endourol, 2019, 33(12): 987-994. DOI: 10.1089/end.2019.0432. [52] OO M M, GANDHI H R, CHONG K T, et al. Automated Needle Targeting with X-ray(ANT-X)- Robot-assisted device for percutaneous nephrolithotomy(PCNL)with its first successful use in human[J]. J Endourol, 2021, 35(6): e919. DOI: 10.1089/end.2018.0003. [53] NGUYEN D D, LUO J W, LU X H, et al. Estimating the health-related quality of life of kidney stone patients: initial results from the Wisconsin Stone Quality of Life Machine-Learning Algorithm(WISQOL-MLA)[J]. BJU Int, 2021, 128(1): 88-94. DOI: 10.1111/bju.15300. [54] LI A Y, ELLIOT N. Natural language processing to identify ureteric stones in radiology reports[J]. J Med Imaging Radiat Oncol, 2019, 63(3): 307-310. DOI: 10.1111/1754-9485.12861. [55] JUNGMANN F, KÄMPGEN B, MILDENBERGER P, et al. Towards data-driven medical imaging using natural language processing in patients with suspected urolithiasis[J]. Int J Med Inform, 2020, 137: 104106. DOI: 10.1016/j.ijmedinf.2020.104106. [56] BEJAN C A, LEE D J, XU Y M, et al. Performance of a natural language processing method to extract stone composition from the electronic health record[J]. Urology, 2019, 132: 56-62. DOI: 10.1016/j.urology.2019.07.007. [57] XIANG L Y, JIN X, LIU Y, et al. Prediction of the occurrence of calcium oxalate kidney stones based on clinical and gut microbiota characteristics[J]. World J Urol, 2022, 40(1): 221-227. DOI: 10.1007/s00345-021-03801-7. |