[1] XU Y F, XUE N Y, ZHANG S M, et al. The value of contrast-enhanced ultrasonography in differential diagnosis of benign and malignant ovarian sex cord stromal tumors[J]. Gland Surg, 2022, 11(6): 1086-1093. DOI: 10.21037/gs-22-301. [2] ARMSTRONG D K, ALVAREZ R D, BAKKUM-GAMEZ J N, et al. Ovarian cancer, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(2): 191-226. DOI: 10.6004/jnccn.2021.0007. [3] NOWAK M, KLINK M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer[J]. Cells, 2020, 9(5): 1299. DOI: 10.3390/cells9051299. [4] DISIS M L, TAYLOR M H, KELLY K, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial[J]. JAMA Oncol, 2019, 5(3): 393-401. DOI: 10.1001/jamaoncol.2018.6258. [5] CRUZ I N, COLEY H M, KRAMER H B, et al. Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins[J]. Cancer Genomics Proteomics, 2017, 14(1): 35-51. DOI: 10.21873/cgp.20017. [6] 鲁振雯, 朱红斌, 丁晓虎, 等. ATP7B功能活性及其基因多态性与绝经后卵巢癌顺铂-紫杉醇化疗耐药相关[J]. 临床与病理杂志, 2019, 39(9): 1959-1965. DOI: 10.3978/j.issn.2095-6959.2019.09.017. [7] DASARI S, NJIKI S, MBEMI A, et al. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy[J]. Int J Mol Sci, 2022, 23(3): 1532. DOI: 10.3390/ijms23031532. [8] BUKOWSKI K, KCIUK M, KONTEK R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. Int J Mol Sci, 2020, 21(9): 3233. DOI: 10.3390/ijms21093233. [9] LEDERMANN J A, DREW Y, KRISTELEIT R S. Homologous recombination deficiency and ovarian cancer[J]. Eur J Cancer, 2016, 60: 49-58. DOI: 10.1016/j.ejca.2016.03.005. [10] CHRISTIE E L, BOWTELL D D L. Acquired chemotherapy resistance in ovarian cancer[J]. Ann Oncol, 2017, 28(suppl_8): viii13-viii15. DOI: 10.1093/annonc/mdx446. [11] STEFANOU D T, SOULIOTIS V L, ZAKOPOULOU R, et al. DNA damage repair: predictor of platinum efficacy in ovarian cancer?[J]. Biomedicines, 2021, 10(1): 82. DOI: 10.3390/biomedicines10010082. [12] XIAO Y, LIN F T, LIN W C. ACTL6A promotes repair of cisplatin-induced DNA damage, a new mechanism of platinum resistance in cancer[J]. Proc Natl Acad Sci USA, 2021, 118(3): e2015808118. DOI: 10.1073/pnas.2015808118. [13] HUANG T T, LAMPERT E J, COOTS C, et al. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer[J]. Cancer Treat Rev, 2020, 86: 102021. DOI: 10.1016/j.ctrv.2020.102021. [14] MIRZA-AGHAZADEH-ATTARI M, OSTADIAN C, SAEI A A, et al. DNA damage response and repair in ovarian cancer: potential targets for therapeutic strategies[J]. DNA Repair(Amst), 2019, 80: 59-84. DOI: 10.1016/j.dnarep.2019.06.005. [15] WONG-BROWN M W, VAN DER WESTHUIZEN A, BOWDEN N A. Targeting DNA repair in ovarian cancer treatment resistance[J]. Clin Oncol, 2020, 32(8): 518-526. DOI: 10.1016/j.clon.2020.03.005. [16] KOBAYASHI H, OGAWA K, KAWAHARA N, et al. Sequential molecular changes and dynamic oxidative stress in high-grade serous ovarian carcinogenesis[J]. Free Radic Res, 2017, 51(9/10): 755-764. DOI: 10.1080/10715762.2017.1383605. [17] GENTRIC G, KIEFFER Y, MIEULET V, et al. PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers[J]. Cell Metab, 2019, 29(1): 156-173. DOI: 10.1016/j.cmet.2018.09.002. [18] WU X, HAN L Y, ZHANG X X, et al. The study of Nrf2 signaling pathway in ovarian cancer[J]. Crit Rev Eukaryot Gene Expr, 2018, 28(4): 329-336. DOI: 10.1615/critreveukaryotgeneexpr.2018020286. [19] BAO L J, WU J F, DODSON M, et al. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells[J]. Mol Carcinog, 2017, 56(6): 1543-1553. DOI: 10.1002/mc.22615. [20] BAO L J, JARAMILLO M C, ZHANG Z B, et al. Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma[J]. Int J Clin Exp Pathol, 2014, 7(4): 1502-1513. [21] XIA M H, YAN X Y, ZHOU L, et al. p62 suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells[J]. J Cancer, 2020, 11(6): 1299-1307. DOI: 10.7150/jca.34423. [22] YAPA N M B, LISNYAK V, RELJIC B, et al. Mitochondrial dynamics in health and disease[J]. FEBS Lett, 2021, 595(8): 1184-1204. DOI: 10.1002/1873-3468.14077. [23] CASTELLANI C A, LONGCHAMPS R J, SUN J, et al. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease[J]. Mitochondrion, 2020, 53: 214-223. DOI: 10.1016/j.mito.2020.06.004. [24] PICCA A, CALVANI R, COELHO-JUNIOR H J, et al. Cell death and inflammation: the role of mitochondria in health and disease[J]. Cells, 2021, 10(3): 537. DOI: 10.3390/cells10030537. [25] QUILES J M, GUSTAFSSON Å B. The role of mitochondrial fission in cardiovascular health and disease[J]. Nat Rev Cardiol, 2022, 19(11): 723-736. DOI: 10.1038/s41569-022-00703-y. [26] ZOU G P, YU C X, SHI S L, et al. Mitochondrial dynamics mediated by DRP1 and MFN2 contributes to cisplatin chemoresistance in human ovarian cancer SKOV3 cells[J]. J Cancer, 2021, 12(24): 7358-7373. DOI: 10.7150/jca.61379. [27] GORGUN M F, ZHUO M, ENGLANDER E W. Cisplatin toxicity in dorsal root ganglion neurons is relieved by meclizine via diminution of mitochondrial compromise and improved clearance of DNA damage[J]. Mol Neurobiol, 2017, 54(10): 7883-7895. DOI: 10.1007/s12035-016-0273-9. [28] KLEIH M, BÖPPLE K, DONG M, et al. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells[J]. Cell Death Dis, 2019, 10(11): 851. DOI: 10.1038/s41419-019-2081-4. [29] ZHENG Z, LI X, YANG B K, et al. SORL1 stabilizes ABCB1 to promote cisplatin resistance in ovarian cancer[J]. Funct Integr Genomics, 2023, 23(2): 147. DOI: 10.1007/s10142-023-01075-3. [30] HAVASI A, CAINAP S S, HAVASI A T, et al. Ovarian cancer-insights into platinum resistance and overcoming it[J]. Medicina(Kaunas), 2023, 59(3): 544. DOI: 10.3390/medicina59030544. [31] TONG X J, ZHAO J, ZHANG Y H, et al. Expression levels of MRP1, GST-π, and GSK3β in ovarian cancer and the relationship with drug resistance and prognosis of patients[J]. Oncol Lett, 2019, 18(1): 22-28. DOI: 10.3892/ol.2019.10315. [32] EHRLICHOVA M, MOHELNIKOVA-DUCHONOVA B, HRDY J, et al. The association of taxane resistance genes with the clinical course of ovarian carcinoma[J]. Genomics, 2013, 102(2): 96-101. DOI: 10.1016/j.ygeno.2013.03.005. [33] LIANG Z D, LONG Y, TSAI W B, et al. Mechanistic basis for overcoming platinum resistance using copper chelating agents[J]. Mol Cancer Ther, 2012, 11(11): 2483-2494. DOI: 10.1158/1535-7163.MCT-12-0580. [34] PAN H B, KIM E, RANKIN G O, et al. Theaflavin-3,3'-digallate enhances the inhibitory effect of cisplatin by regulating the copper transporter 1 and glutathione in human ovarian cancer cells[J]. Int J Mol Sci, 2018, 19(1): 117. DOI: 10.3390/ijms19010117. [35] KILARI D, GUANCIAL E, KIM E S. Role of copper transporters in platinum resistance[J]. World J Clin Oncol, 2016, 7(1): 106-113. DOI: 10.5306/wjco.v7.i1.106. [36] YANG L, XIE H J, LI Y Y, et al. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer(Review)[J]. Oncol Rep, 2022, 47(4): 82. DOI: 10.3892/or.2022.8293. [37] YUAN J, LAN H, JIANG X Y, et al. Bcl-2 family: novel insight into individualized therapy for ovarian cancer(Review)[J]. Int J Mol Med, 2020, 46(4): 1255-1265. DOI: 10.3892/ijmm.2020.4689. [38] LIU Y Z, SHI L J, YUAN C Z, et al. Downregulation of ITIH3 contributes to cisplatin-based chemotherapy resistance in ovarian carcinoma via the Bcl-2 mediated anti-apoptosis signaling pathway[J]. Oncol Lett, 2022, 25(2): 61. DOI: 10.3892/ol.2022.13646. [39] VILLEDIEU M, LOUIS M H, DUTOIT S, et al. Absence of Bcl-xL down-regulation in response to cisplatin is associated with chemoresistance in ovarian carcinoma cells[J]. Gynecol Oncol, 2007, 105(1): 31-44. DOI: 10.1016/j.ygyno.2006.12.011. [40] CREMONA M, VANDENBERG C J, FARRELLY A M, et al. BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis(IAP)family inhibitors[J]. Br J Cancer, 2022, 127(3): 488-499. DOI: 10.1038/s41416-022-01823-5. [41] DAI Y, JIN S G, LI X P, et al. Correction: the involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer[J]. Oncotarget, 2020, 11(4): 488-489. DOI: 10.18632/oncotarget.27376. [42] HERNANDEZ L F, DULL A B, KORRAPATI S, et al. Smac-mimetic enhances antitumor effect of standard chemotherapy in ovarian cancer models via Caspase 8-independent mechanism[J]. Cell Death Discov, 2021, 7(1): 134. DOI: 10.1038/s41420-021-00511-2. [43] KASHYAP D, GARG V K, GOEL N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021, 125: 73-120. DOI: 10.1016/bs.apcsb.2021.01.003. [44] GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. DOI: 10.1038/s41418-017-0012-4. [45] BOGANI G, LOPEZ S, MANTIERO M, et al. Immunotherapy for platinum-resistant ovarian cancer[J]. Gynecol Oncol, 2020, 158(2): 484-488. DOI: 10.1016/j.ygyno.2020.05.681. [46] ZHU X L, SHEN H L, YIN X M, et al. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019, 38(1): 81. DOI: 10.1186/s13046-019-1095-1. [47] MLYNSKA A, POVILAITYTE E, ZEMLECKAITE I, et al. Platinum sensitivity of ovarian cancer cells does not influence their ability to induce M2-type macrophage polarization[J]. Am J Reprod Immunol, 2018, 80(3): e12996. DOI: 10.1111/aji.12996. [48] ZHANG F, CUI J Y, GAO H F, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis[J]. Future Oncol, 2020, 16(32): 2619-2633. DOI: 10.2217/fon-2020-0095. [49] DENG J L, BAI X P, FENG X J, et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression[J]. BMC Cancer, 2019, 19(1): 618. DOI: 10.1186/s12885-019-5824-9. [50] FANG S Y, ZHANG P, CHEN X P, et al. Lanthanum chloride sensitizes cisplatin resistance of ovarian cancer cells via PI3K/Akt pathway[J]. Front Med(Lausanne), 2021, 8: 776876. DOI: 10.3389/fmed.2021.776876. [51] ZHOU F X, YANG X S, ZHAO H, et al. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer[J]. Theranostics, 2018, 8(19): 5200-5212. DOI: 10.7150/thno.27806. [52] RUSSELL R C, GUAN K L. The multifaceted role of autophagy in cancer[J]. EMBO J, 2022, 41(13): e110031. DOI: 10.15252/embj.2021110031. [53] ZHANG X F, QI Z H, YIN H J, et al. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy[J]. Theranostics, 2019, 9(4): 1096-1114. DOI: 10.7150/thno.29673. [54] OLIVO E, LA CHIMIA M, CERAMELLA J, et al. Moving beyond the tip of the iceberg: DJ-1 implications in cancer metabolism[J]. Cells, 2022, 11(9): 1432. DOI: 10.3390/cells11091432. [55] JIN W. Novel insights into PARK7(DJ-1), a potential anti-cancer therapeutic target, and implications for cancer progression[J]. J Clin Med, 2020, 9(5): 1256. DOI: 10.3390/jcm9051256. [56] 王伟明,刘辉,蔡智慧,等. DJ-1蛋白在卵巢癌中的表达及意义[J].中国妇幼保健, 2014, 29(14): 2243-2245. [57] 姚蘇格.上皮性卵巢癌患者组织中DJ-1表达水平与预后的相关性研究[D].保定: 河北大学, 2023: 3-4. [58] GONG F M, PENG X C, ZENG Z, et al. Proteomic analysis of cisplatin resistance in human ovarian cancer using 2-DE method[J]. Mol Cell Biochem, 2011, 348: 141-147. DOI: 10.1007/s11010-010-0648-6. [59] GUPTA N, BAHR J M, SHARMA S, et al. Inhibition of ovarian tumor-associated DJ-1 expression and tumor progression[J]. J Clin Oncol, 2014, 32(15_suppl): e16527. DOI: 10.1200/jco.2014.32.15_suppl.e16527. |