医学研究与教育 ›› 2025, Vol. 42 ›› Issue (1): 1-13.DOI: 10.3969/j.issn.1674-490X.2025.01.001
• 基础医学 •
李文娟,贾怡明,唐雪
收稿日期:
2024-12-25
发布日期:
2025-02-28
作者简介:
李文娟(1977—),女,甘肃静宁人,教授,博士,硕士生导师,主要从事肿瘤代谢的研究。 E-mail: liwenjuan@hbu.edu.cn
基金资助:
Received:
2024-12-25
Published:
2025-02-28
摘要: AMP激活蛋白激酶(AMP-activated protein kinase, AMPK)是细胞能量感知器,通过调控代谢维持能量稳定。低能量激活AMPK,增强分解代谢的同时抑制合成代谢。这一机制为ATP的产生提供了有力支持,确保细胞在能量应激状态时有效利用资源以适应环境的变化。AMPK在癌症中的作用呈现双重性:一方面,AMPK被激活后,借助其对糖代谢、脂质代谢等途径的调节,稳定癌细胞内能量水平,从而对癌细胞的增殖和转移加以遏制;另一方面,AMPK通过调控癌症代谢维持其能量稳定,进而对癌细胞的生存起促进作用。现将从AMPK的结构、生物学功能及其在癌症中的双重作用展开综述,旨在为癌症的治疗及诊断带来新的思路和策略。
中图分类号:
李文娟,贾怡明,唐雪. AMP激活蛋白激酶在癌症代谢中的效用[J]. 医学研究与教育, 2025, 42(1): 1-13.
[1] SMILES W J, OVENS A J, OAKHILL J S, et al. The metabolic sensor AMPK: twelve enzymes in one[J]. Mol Metab, 2024, 90: 102042. DOI: 10.1016/j.molmet.2024.102042. [2] JUSZCZAK F, CARON N, MATHEW A V, et al. Critical role for AMPK in metabolic disease-induced chronic kidney disease[J]. Int J Mol Sci, 2020, 21(21): 7994. DOI: 10.3390/ijms21217994. [3] STEINBERG G R, GRAHAME HARDIE D. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol, 2023, 24(4): 255-272. DOI: 10.1038/s41580-022-00547-x. [4] CABA C, BLACK M, LIU Y J, et al. Autoinhibition of ubiquitin-specific protease 8: insights into domain interactions and mechanisms of regulation[J]. J Biol Chem, 2024, 300(10): 107727. DOI: 10.1016/j.jbc.2024.107727. [5] PANG T, XIONG B, LI J Y, et al. Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits[J]. J Biol Chem, 2007, 282(1): 495-506. DOI: 10.1074/jbc.M605790200. [6] HAWLEY S A, DAVISON M, WOODS A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase[J]. J Biol Chem, 1996, 271(44): 27879-27887. DOI: 10.1074/jbc.271.44.27879. [7] SUTER M, RIEK U, TUERK R, et al. Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase[J]. J Biol Chem, 2006, 281(43): 32207-32216. DOI: 10.1074/jbc.M606357200. [8] PENUGURTI V, MANNE R K, BAI L, et al. AMPK: the energy sensor at the crossroads of aging and cancer[J]. Semin Cancer Biol, 2024, 106/107: 15-27. DOI: 10.1016/j.semcancer.2024.08.002. [9] HUDSON E R, PAN D A, JAMES J, et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias[J]. Curr Biol, 2003, 13(10): 861-866. DOI: 10.1016/s0960-9822(03)00249-5. [10] POLEKHINA G, GUPTA A, MICHELL B J, et al. AMPK beta subunit targets metabolic stress sensing to glycogen[J]. Curr Biol, 2003, 13(10): 867-871. DOI: 10.1016/s0960-9822(03)00292-6. [11] HURTADO-CARNEIRO V, PÉREZ-GARCÍA A, ALVAREZ E, et al. PAS kinase: a nutrient and energy sensor “master key” in the response to fasting/feeding conditions[J]. Front Endocrinol(Lausanne), 2020, 11: 594053. DOI: 10.3389/fendo.2020.594053. [12] LI X D, WANG L L, EDWARD ZHOU X, et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen[J]. Cell Res, 2015, 25(1): 50-66. DOI: 10.1038/cr.2014.150. [13] STERNLIEB T, SCHOIJET A C, GENTA P D, et al. An AMP-activated protein kinase complex with two distinctive alpha subunits is involved in nutritional stress responses in Trypanosoma cruzi[J]. PLoS Negl Trop Dis, 2021, 15(5): e0009435. DOI: 10.1371/journal.pntd.0009435. [14] TOWNLEY R, SHAPIRO L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase[J]. Science, 2007, 315(5819): 1726-1729. DOI: 10.1126/science.1137503. [15] XIAO B, SANDERS M J, UNDERWOOD E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011, 472(7342): 230-233. DOI: 10.1038/nature09932. [16] CORDERO M D, VIOLLET B. AMP-activated Protein Kinase[M]. Cham: Springer International Publishing, 2016:3-227. [17] HEALY J E, GEARHART C N, BATEMAN J L, et al. AMPK and ACCchange with fasting and physiological condition in euthermic and hibernating golden-mantled ground squirrels(Callospermophilus lateralis)[J]. Comp Biochem Physiol A Mol Integr Physiol, 2011, 159(3): 322-331. DOI: 10.1016/j.cbpa.2011.03.026. [18] GARCIA D, SHAW R J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell, 2017, 66(6): 789-800. DOI: 10.1016/j.molcel.2017.05.032. [19] GRAHAME HARDIE D. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function[J]. Genes Dev, 2011, 25(18): 1895-1908. DOI: 10.1101/gad.17420111. [20] PONNUSAMY L, NATARAJAN S R, THANGARAJ K, et al. Therapeutic aspects of AMPK in breast cancer: progress, challenges, and future directions[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188379. DOI: 10.1016/j.bbcan.2020.188379. [21] CHEUNG P C, SALT I P, DAVIES S P, et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding[J]. Biochem J, 2000, 346(Pt 3): 659-669. [22] GOWANS G J, HAWLEY S A, ROSS F A, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metab, 2013, 18(4): 556-566. DOI: 10.1016/j.cmet.2013.08.019. [23] HAWLEY S A, BOUDEAU J, REID J L, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade[J]. J Biol, 2003, 2(4): 28. DOI: 10.1186/1475-4924-2-28. [24] WOODS A, JOHNSTONE S R, DICKERSON K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade[J]. Curr Biol, 2003, 13(22): 2004-2008. DOI: 10.1016/j.cub.2003.10.031. [25] SHAW R J, KOSMATKA M, BARDEESY N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress[J]. Proc Natl Acad Sci USA, 2004, 101(10): 3329-3335. DOI: 10.1073/pnas.0308061100. [26] LIN S C, GRAHAME HARDIE D. AMPK: sensing glucose as well as cellular energy status[J]. Cell Metab, 2018, 27(2): 299-313. DOI: 10.1016/j.cmet.2017.10.009. [27] FLORES K, SIQUES P, BRITO J, et al. AMPK and the challenge of treating hypoxic pulmonary hypertension[J]. Int J Mol Sci, 2022, 23(11): 6205. DOI: 10.3390/ijms23116205. [28] HARDIE D G, SCHAFFER B E, BRUNET A. AMPK: an energy-sensing pathway with multiple inputs and outputs[J]. Trends Cell Biol, 2016, 26(3): 190-201. DOI: 10.1016/j.tcb.2015.10.013. [29] MARCELO K L, MEANS A R, YORK B. The Ca(2+)/calmodulin/CaMKK2 axis: nature's metabolic CaMshaft[J]. Trends Endocrinol Metab, 2016, 27(10): 706-718. DOI: 10.1016/j.tem.2016.06.001. [30] COOL B, ZINKER B, CHIOU W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J]. Cell Metab, 2006, 3(6): 403-416. DOI: 10.1016/j.cmet.2006.05.005. [31] CARLING D, ZAMMIT V A, HARDIE D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J]. FEBS Lett, 1987, 223(2): 217-222. DOI: 10.1016/0014-5793(87)80292-2. [32] DAI R Y, ZHAO X F, LI J J, et al. Implication of transcriptional repression in compound C-induced apoptosis in cancer cells[J]. Cell Death Dis, 2013, 4(10): e883. DOI: 10.1038/cddis.2013.419. [33] GRAHAME HARDIE D. AMPK: a target for drugs and natural products with effects on both diabetes and cancer[J]. Diabetes, 2013, 62(7): 2164-2172. DOI: 10.2337/db13-0368. [34] CARLING D, ZAMMIT V A, HARDIE D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J]. FEBS Lett, 1987, 223(2): 217-222. DOI: 10.1016/0014-5793(87)80292-2. [35] HIRSCH H A, ILIOPOULOS D, TSICHLIS P N, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission[J]. Cancer Res, 2009, 69(19): 7507-7511. DOI: 10.1158/0008-5472.CAN-09-2994. [36] KIM J W, DANG C V. Cancer's molecular sweet tooth and the Warburg effect[J]. Cancer Res, 2006, 66(18): 8927-8930. DOI: 10.1158/0008-5472.CAN-06-1501. [37] BANDO H, ATSUMI T, NISHIO T, et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer[J]. Clin Cancer Res, 2005, 11(16): 5784-5792. DOI: 10.1158/1078-0432.CCR-05-0149. [38] DÜVEL K, YECIES J L, MENON S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell, 2010, 39(2): 171-183. DOI: 10.1016/j.molcel.2010.06.022. [39] LAUGHNER E, TAGHAVI P, CHILES K, et al. HER2(neu)signaling increases the rate of hypoxia-inducible factor 1alpha(HIF-1alpha)synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression[J]. Mol Cell Biol, 2001, 21(12): 3995-4004. DOI: 10.1128/MCB.21.12.3995-4004.2001. [40] ZHONG H, CHILES K, FELDSER D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics[J]. Cancer Res, 2000, 60(6): 1541-1545. [41] BEN-SAHRA I, MANNING B D. mTORC1 signaling and the metabolic control of cell growth[J]. Curr Opin Cell Biol, 2017, 45: 72-82. DOI: 10.1016/j.ceb.2017.02.012. [42] TSENG H I, ZENG Y S, LIN Y J, et al. A novel AMPK activator shows therapeutic potential in hepatocellular carcinoma by suppressing HIF1α-mediated aerobic glycolysis[J]. Mol Oncol, 2022, 16(11): 2274-2294. DOI: 10.1002/1878-0261.13211. [43] HALSE R, FRYER L G D, MCCORMACK J G, et al. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase[J]. Diabetes, 2003, 52(1): 9-15. DOI: 10.2337/diabetes.52.1.9. [44] JØRGENSEN S B, NIELSEN J N, BIRK J B, et al. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading[J]. Diabetes, 2004, 53(12): 3074-3081. DOI: 10.2337/diabetes.53.12.3074. [45] KEERTHANA C K, RAYGINIA T P, SHIFANA S C, et al. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment[J]. Front Immunol, 2023, 14: 1114582. DOI: 10.3389/fimmu.2023.1114582. [46] ASCHENBACH W G, HIRSHMAN M F, FUJII N, et al. Effect of AICAR treatment on glycogen metabolism in skeletal muscle[J]. Diabetes, 2002, 51(3): 567-573. DOI: 10.2337/diabetes.51.3.567. [47] BUHL E S, JESSEN N, SCHMITZ O, et al. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner[J]. Diabetes, 2001, 50(1): 12-17. DOI: 10.2337/diabetes.50.1.12. [48] HA J, GUAN K L, KIM J. AMPK and autophagy in glucose/glycogen metabolism[J]. Mol Aspects Med, 2015, 46: 46-62. DOI: 10.1016/j.mam.2015.08.002. [49] OLIGSCHLAEGER Y, MIGLIANICO M, CHANDA D, et al. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation[J]. J Biol Chem, 2015, 290(18): 11715-11728. DOI: 10.1074/jbc.M114.633271. [50] BEALE E G, HARVEY B J, FOREST C. PCK1 and PCK2 as candidate diabetes and obesity genes[J]. Cell Biochem Biophys, 2007, 48(2/3): 89-95. DOI: 10.1007/s12013-007-0025-6. [51] BERG J, TYMOCZKO J L, STRYER L.Glycolysis and gluconeogenesis biochemistry[M].New York: Freeman and Company, 2012:163-204. [52] GRASMANN G, SMOLLE E, OLSCHEWSKI H, et al. Gluconeogenesis in cancer cells-Repurposing of a starvation-induced metabolic pathway?[J]. Biochim Biophys Acta BBA Rev Cancer, 2019, 1872(1): 24-36. DOI: 10.1016/j.bbcan.2019.05.006. [53] SINGH M, NICOL A T, DELPOZZO J, et al. Demystifying the relationship between metformin, AMPK, and doxorubicin cardiotoxicity[J]. Front Cardiovasc Med, 2022, 9: 839644. DOI: 10.3389/fcvm.2022.839644. [54] BEG Z H, ALLMANN D W, GIBSON D M. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol[J]. Biochem Biophys Res Commun, 1973, 54(4): 1362-1369. DOI: 10.1016/0006-291x(73)91137-6. [55] HWANG Y P, KIM H G, CHOI J H, et al. S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway[J]. J Nutr Biochem, 2013, 24(8): 1469-1478. DOI: 10.1016/j.jnutbio.2012.12.006. [56] LI Y, XU S Q, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J]. Cell Metab, 2011, 13(4): 376-388. DOI: 10.1016/j.cmet.2011.03.009. [57] DAVIE E, FORTE G M A, PETERSEN J. Nitrogen regulates AMPK to control TORC1 signaling[J]. Curr Biol, 2015, 25(4): 445-454. DOI: 10.1016/j.cub.2014.12.034. [58] JO H K, KIM G W, JEONG K J, et al. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway[J]. Biol Pharm Bull, 2014, 37(8): 1341-1351. DOI: 10.1248/bpb.b14-00281. [59] STEINBERG G R, CARLING D. AMP-activated protein kinase: the current landscape for drug development[J]. Nat Rev Drug Discov, 2019, 18(7): 527-551. DOI: 10.1038/s41573-019-0019-2. [60] FORETZ M, EVEN P C, VIOLLET B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo[J]. Int J Mol Sci, 2018, 19(9): 2826. DOI: 10.3390/ijms19092826. [61] JEON S M, CHANDEL N S, HAY N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress[J]. Nature, 2012, 485(7400): 661-665. DOI: 10.1038/nature11066. [62] HAN S H, MALAGA-DIEGUEZ L, CHINGA F, et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism[J]. J Am Soc Nephrol, 2016, 27(2): 439-453. DOI: 10.1681/ASN.2014121181. [63] VARA-CIRUELOS D, RUSSELL F M, GRAHAME HARDIE D. The strange case of AMPK and cancer: dr Jekyll or mr Hyde? [J]. Open Biol, 2019, 9(7): 190099. DOI: 10.1098/rsob.190099. [64] ZAIDI S, GANDHI J, JOSHI G, et al. The anticancer potential of metformin on prostate cancer[J]. Prostate Cancer Prostatic Dis, 2019, 22(3): 351-361. DOI: 10.1038/s41391-018-0085-2. [65] ZONCU R, EFEYAN A, SABATINI D M. mTOR: from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35. DOI: 10.1038/nrm3025. [66] BURNETT P E, BARROW R K, COHEN N A, et al. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1[J]. Proc Natl Acad Sci USA, 1998, 95(4): 1432-1437. DOI: 10.1073/pnas.95.4.1432. [67] GINGRAS A C, GYGI S P, RAUGHT B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism[J]. Genes Dev, 1999, 13(11): 1422-1437. DOI: 10.1101/gad.13.11.1422. [68] GAN R Y, LI H B. Recent progress on liver kinase B1(LKB1): expression, regulation, downstream signaling and cancer suppressive function[J]. Int J Mol Sci, 2014, 15(9): 16698-16718. DOI: 10.3390/ijms150916698. [69] AHMED N, ESCALONA R, LEUNG D, et al. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells[J]. Semin Cancer Biol, 2018, 53: 265-281. DOI: 10.1016/j.semcancer.2018.10.002. [70] GWINN D M, SHACKELFORD D B, EGAN D F, et al. AMPK phosphorylation of Raptor mediates a metabolic checkpoint[J]. Mol Cell, 2008, 30(2): 214-226. DOI: 10.1016/j.molcel.2008.03.003. [71] INOKI K, ZHU T Q, GUAN K L. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 2003, 115(5): 577-590. DOI: 10.1016/s0092-8674(03)00929-2. [72] FAUBERT B, BOILY G, IZREIG S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metab, 2013, 17(1): 113-124. DOI: 10.1016/j.cmet.2012.12.001. [73] VARA-CIRUELOS D, DANDAPANI M, RUSSELL F M, et al. Phenformin, but not metformin, delays development of T cell acute lymphoblastic leukemia/lymphoma via cell-autonomous AMPK activation[J]. Cell Rep, 2019, 27(3): 690-698.e4. DOI: 10.1016/j.celrep.2019.03.067. [74] LEE C W, WONG L L, TSE E Y, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells[J]. Cancer Res, 2012, 72(17): 4394-4404. DOI: 10.1158/0008-5472.CAN-12-0429. [75] CAI Z, LI C F, HAN F, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis[J]. Mol Cell, 2020, 80(2): 263-278. DOI: 10.1016/j.molcel.2020.09.018. [76] EICHNER L J, BRUN S N, HERZIG S, et al. Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models[J]. Cell Metab, 2019, 29(2): 285-302. DOI: 10.1016/j.cmet.2018.10.005. [77] FANG J H, CHEN J Y, ZHENG J L, et al. Fructose metabolism in tumor endothelial cells promotes angiogenesis by activating AMPK signaling and mitochondrial respiration[J]. Cancer Res, 2023, 83(8): 1249-1263. DOI: 10.1158/0008-5472.CAN-22-1844. [78] DUAN F S, MEI C L, YANG L H, et al. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells[J]. Sci Rep, 2020, 10(1): 7714. DOI: 10.1038/s41598-020-64880-x. [79] LI F, YANG C, ZHANG H B, et al. BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells[J]. Cancer Med, 2019, 8(10): 4792-4805. DOI: 10.1002/cam4.2385. [80] WANG X B, JIN J L, WAN F N, et al. AMPK promotes SPOP-mediated NANOG degradation to regulate prostate cancer cell stemness[J]. Dev Cell, 2019, 48(3): 345-360. DOI: 10.1016/j.devcel.2018.11.033. [81] QUINN B J, KITAGAWA H, MEMMOTT R M, et al. Repositioning metformin for cancer prevention and treatment[J]. Trends Endocrinol Metab, 2013, 24(9): 469-480. DOI: 10.1016/j.tem.2013.05.004. |
[1] | 周程艳,李倩,梁宇璇,国洪宾,赵盈秋. 两种动脉粥样硬化模型制备方法的比较[J]. 医学研究与教育, 2021, 38(1): 1-11. |
[2] | 吴鹏韬,杨娜,刘梅,郭冬梅,俞虹. 血脂水平与脾功能关系的初步探讨[J]. 医学研究与教育, 2012, 29(1): 25-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||