[1] RAY DORSEY E, BLOEM B R. The parkinson pandemic:a call to action[J]. JAMA Neurol, 2018, 75(1): 9-10. DOI: 10.1001/jamaneurol.2017.3299. [2] BALESTRINO R, SCHAPIRA A H V. Parkinson disease[J]. Eur J Neurol, 2020, 27(1): 27-42. DOI: 10.1111/ene.14108. [3] ANANDHAN A, JACOME M S, LEI S L, et al. Metabolic dysfunction in Parkinson's disease: bioenergetics, redox homeostasis and central carbon metabolism[J]. Brain Res Bull, 2017, 133: 12-30. DOI: 10.1016/j.brainresbull.2017.03.009. [4] TREFTS E, SHAW R J. AMPK: restoring metabolic homeostasis over space and time[J]. Mol Cell, 2021, 81(18): 3677-3690. DOI: 10.1016/j.molcel.2021.08.015. [5] BOBELA W, NAZEERUDDIN S, KNOTT G, et al. Modulating the catalytic activity of AMPK has neuroprotective effects against α-synuclein toxicity[J]. Mol Neurodegener, 2017, 12(1): 80. DOI: 10.1186/s13024-017-0220-x. [6] HANG L T, WANG Z Y, FOO A S C, et al. Conditional disruption of AMP kinase in dopaminergic neurons promotes Parkinson's disease-associated phenotypes in vivo[J]. Neurobiol Dis, 2021, 161: 105560. DOI: 10.1016/j.nbd.2021.105560. [7] PACELLI C, GIGUÈRE N, BOURQUE M J, et al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons[J]. Curr Biol, 2015, 25(18): 2349-2360. DOI: 10.1016/j.cub.2015.07.050. [8] MURALEEDHARAN R, DASGUPTA B. AMPK in the brain: its roles in glucose and neural metabolism[J]. FEBS J, 2022, 289(8): 2247-2262. DOI: 10.1111/febs.16151. [9] TANG B L. Glucose, glycolysis, and neurodegenerative diseases[J]. J Cell Physiol, 2020, 235(11): 7653-7662. DOI: 10.1002/jcp.29682. [10] SOLANA-MANRIQUE C, SANZ F J, RIPOLLÉS E, et al. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency[J]. Free Radic Biol Med, 2020, 158: 137-148. DOI: 10.1016/j.freeradbiomed.2020.06.036. [11] DOMÉNECH E, MAESTRE C, ESTEBAN-MARTÍNEZ L, et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest[J]. Nat Cell Biol, 2015, 17(10): 1304-1316. DOI: 10.1038/ncb3231. [12] TAMARGO-GÓMEZ I, MARIÑO G. AMPK: regulation of metabolic dynamics in the context of autophagy[J]. Int J Mol Sci, 2018, 19(12): 3812. DOI: 10.3390/ijms19123812. [13] CHENG Q, CHEN J, GUO H, et al. Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson's disease model via AMPK activation[J]. Acta Pharmacol Sin, 2021, 42(5): 665-678. DOI: 10.1038/s41401-020-0487-2. [14] VALDINOCCI D, SIMÕES R F, KOVAROVA J, et al. Intracellular and intercellular mitochondrial dynamics in Parkinson's disease[J]. Front Neurosci, 2019, 13: 930. DOI: 10.3389/fnins.2019.00930. [15] TOYAMA E Q, HERZIG S, COURCHET J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress[J]. Science, 2016, 351(6270): 275-281. DOI: 10.1126/science.aab4138. [16] HU Y Q, CHEN H, ZHANG L Y, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses[J]. Autophagy, 2021, 17(5): 1142-1156. DOI: 10.1080/15548627.2020.1749490. [17] PENG K G, YANG L K, WANG J, et al. The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity[J]. Mol Neurobiol, 2017, 54(5): 3783-3797. DOI: 10.1007/s12035-016-9944-9. [18] HUANG J, WANG X, ZHU Y, et al. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway[J]. CNS Neurosci Ther, 2019, 25(6): 796-807. DOI: 10.1111/cns.13114. [19] LIZAMA B N, CHU C T. Neuronal autophagy and mitophagy in Parkinson's disease[J]. Mol Aspects Med, 2021, 82: 100972. DOI: 10.1016/j.mam.2021.100972. [20] ZHANG M, DENG Y N, ZHANG J Y, et al. SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway[J]. Aging Dis, 2018, 9(2): 273-286. DOI: 10.14336/AD.2017.0517. [21] CHEN C, CHEN Y H, LIU T T, et al. Dexmedetomidine can enhance PINK1/parkin-mediated mitophagy in MPTP-induced PD mice model by activating AMPK[J]. Oxid Med Cell Longev, 2022, 2022: 7511393. DOI: 10.1155/2022/7511393. [22] HUNG C M, LOMBARDO P S, MALIK N, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy[J]. Sci Adv, 2021, 7(15): eabg4544. DOI: 10.1126/sciadv.abg4544. [23] ZHOU L N, CHENG Y. Alpha-lipoic acid alleviated 6-OHDA-induced cell damage by inhibiting AMPK/mTOR mediated autophagy[J]. Neuropharmacology, 2019, 155: 98-103. DOI: 10.1016/j.neuropharm.2019.04.009. [24] KANG S S, ZHANG Z T, LIU X, et al. α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation[J]. Proc Natl Acad Sci USA, 2017, 114(5): 1183-1188. DOI: 10.1073/pnas.1618627114. [25] TRIST B G, HARE D J, DOUBLE K L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease[J]. Aging Cell, 2019, 18(6): e13031. DOI: 10.1111/acel.13031. [26] RABINOVITCH R C, SAMBORSKA B, FAUBERT B, et al. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species[J]. Cell Rep, 2017, 21(1): 1-9. DOI: 10.1016/j.celrep.2017.09.026. [27] REN Y, SHEN H M. Critical role of AMPK in redox regulation under glucose starvation[J]. Redox Biol, 2019, 25: 101154. DOI: 10.1016/j.redox.2019.101154. [28] JOO M S, KIM W D, LEE K Y, et al. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550[J]. Mol Cell Biol, 2016, 36(14): 1931-1942. DOI: 10.1128/MCB.00118-16. [29] MA L, ZHANG B X, LIU J H, et al. Isoorientin exerts a protective effect against 6-OHDA-induced neurotoxicity by activating the AMPK/AKT/Nrf2 signalling pathway[J]. Food Funct, 2020, 11(12): 10774-10785. DOI: 10.1039/d0fo02165b. [30] PAJARES M, ROJO A I, MANDA G, et al. Inflammation in Parkinson's disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687. DOI: 10.3390/cells9071687. [31] PEIXOTO C A, OLIVEIRA W H, ARAU 'JO S M D R, et al. AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration[J]. Exp Neurol, 2017, 298(Pt A): 31-41. DOI: 10.1016/j.expneurol.2017.08.013. [32] DE ARAU 'JO F M, CUENCA-BERMEJO L, FERNÁNDEZ-VILLALBA E, et al. Role of microgliosis and NLRP3 inflammasome in Parkinson's disease pathogenesis and therapy[J]. Cell Mol Neurobiol, 2022, 42(5): 1283-1300. DOI: 10.1007/s10571-020-01027-6. [33] TAYARA K, ESPINOSA-OLIVA A M, GARCÍA-DOMÍNGUEZ I, et al. Divergent effects of metformin on an inflammatory model of Parkinson's disease[J]. Front Cell Neurosci, 2018, 12: 440. DOI: 10.3389/fncel.2018.00440. [34] WEISOVÁ P, DÁVILA D, TUFFY L P, et al. Role of 5'-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons[J]. Antioxid Redox Signal, 2011, 14(10): 1863-1876. DOI: 10.1089/ars.2010.3544. [35] PUTCHA G V, LE S Y, FRANK S, et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis[J]. Neuron, 2003, 38(6): 899-914. DOI: 10.1016/s0896-6273(03)00355-6. [36] MAHONEY-SÁNCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's disease[J]. Prog Neurobiol, 2021, 196: 101890. DOI: 10.1016/j.pneurobio.2020.101890. [37] CURRAIS A, KEPCHIA D, LIANG Z, et al. The role of AMP-activated protein kinase in oxytosis/ferroptosis: protector or potentiator?[J]. Antioxid Redox Signal, 2024, 41(16/17/18): e1173-e1186. DOI: 10.1089/ars.2022.0013. |