[1] BRIGL M, BRENNER M B. CD1: antigen presentation and T cell function[J]. Annual Review of Immunology, 2004, 22(22):817-890.DOI: 10.1146/annurev.immunol.22.012703.104608. [2] BENDELAC A, SAVAGE P B, TEYTON L. The biology of NKT cells[J]. Annual Review of Immunology, 2007, 25(1):297-336.DOI: 10.1146/annurev.immunol.25.022106.141711. [3] GUMPERZ J E. The ins and outs of CD1 molecules: bringing lipids under immunological surveillance[J]. Traffic, 2010,7(1):2-13.DOI: 10.1111/j.1600-0854.2005.00364.x. [4] EXLEY M, GARCIA J, BALK S P, et al. Requirements for CD1d recognition by human invariant, Vα24+CD4-CD8-T Cells[J]. Journal of Experimental Medicine, 1997, 186(1):109-120. [5] GUMPERZ J E, MIYAKE S, YAMAMURA T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining[J]. Journal of Experimental Medicine, 2002, 195(5):625-636. [6] KAWANO T, CUI J, KOEZUKA Y, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides[J]. Science, 1997, 278(5343):1626-1629. [7] VERVERS F A, KALKHOVEN E, VAN'T B L, et al. Immunometabolic activation of invariant natural killer T cells[J]. Frontiers in Immunology, 2018,9:1192.DOI: 10.3389/fimmu.2018.01192. [8] BRENNAN P J, BRIGL M, BRENNER M B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions[J]. Nature Reviews Immunology, 2013, 13(2):101-117. DOI: 10.1038/nri3369. [9] COHEN N R, GARG S, BRENNER M B. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity[J]. Advances in Immunology, 2009, 102(5):1-94. DOI: 10.1016/S0065-2776(09)01201-2. [10] KOHLGRUBER A C, DONADO C A, LAMARCHE N M, et al. Activation strategies for invariant natural killer T cells[J]. Immunogenetics, 2016, 68(8):1-15.DOI: 10.1007/s00251-016-0944-8. [11] KIM E Y, LYNCH L, BRENNAN P J, et al. The transcriptional programs of iNKT cells[J]. Seminars in Immunology, 2015, 27(1):26-32. DOI: 10.1016/j.smim.2015.02.005. [12] EGAWA T, EBERL G, TANIUCHI I, et al. Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors[J]. Immunity, 2005, 22(6):705-716. DOI: 10.1016/j.immuni.2005.03.011. [13] VAN EIJKEREN R J, KRABBE O, BOES M, et al. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis[J]. Immunology, 2017, 153(2):179-189. DOI: 10.1111/imm.12839. [14] WEI D G, LEE H, PARK S H, et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes[J]. Journal of Experimental Medicine, 2005, 202(2):239-248. DOI: 10.1084/jem.20050413. [15] SAVAGE A K, CONSTANTINIDES M G, HAN J, et al. The Transcription factor PLZF directs the effector program of the NKT cell lineage[J]. Immunity, 2008, 29(3):391-403. DOI: 10.1016/j.immuni.2008.07.011. [16] KOVALOVSKY D, UCHE O U, ELADAD S, et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions[J]. Nature Immunology, 2008, 9(9):1055. DOI: 10.1038/ni.1641. [17] LEE Y J, HOLZAPFEL K L, ZHU J, et al. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells[J]. Nature Immunology, 2013, 14(11):1146-1154. DOI: 10.1038/ni.2731. [18] KWON D I, YOU J L. Lineage differentiation program of invariant natural killer T cells[J]. Immune Network, 2017, 17(6):365-377. DOI: 10.4110/in.2017.17.6.365. [19] YOU J L, HAIGVANG W, GABRIEL J S, et al. Tissue-specific distribution of iNKT cells impacts their cytokine response[J]. Immunity, 2015, 43(3):566-578.DOI: 10.1016/j.immuni.2015.06.025. [20] CROSBY C M, KRONENBERG M. Tissue-specific functions of invariant natural killer T cells[J]. Nature Reviews Immunology, 2018,18(9):559-574. DOI: 10.1038/s41577-018-0034-2. [21] 刘嘉琳, 张雪娇, 杨飞,等. 免疫调节剂CH2b对葡萄糖-6-磷酸异构酶混合肽段诱导的类风湿性关节炎小鼠的影响[J]. 中国免疫学杂志, 2016, 32(8):1094-1098. [22] 陈冬志, 尹晓琳, 刘嘉琳, 等. NOD/LtJ小鼠不同发病阶段iNKT细胞频率及亚群变化分析研究[J].中华微生物学和免疫学杂志,2018,38(5): 327-336. DOI: 10.3760/cma.j.issn.0254-5101.2018.05.002. [23] BRENNAN P J, BRIGL M, BRENNER M B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions[J]. Nature Reviews Immunology, 2013, 13(2):101-117. DOI: 10.1038/nri3369. [24] LYNCH L, MICHELET X, ZHANG S, et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg)cells and macrophages in adipose tissue[J]. Nature Immunology, 2015, 16(1):85-95. DOI: 10.1038/ni.3047. [25] THOMAS S Y, SCANLON S T, GRIEWANK K G, et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions[J]. Journal of Experimental Medicine, 2011, 208(6):1179-1188. DOI: 10.1084/jem.20102630. [26] ZHAO H, YIN X, WANG Y, et al. The role of iNKT cells in chronic inflammation of obese adipose tissue[J]. Medical Research & Education, 2018,112(11):35. [27] BENDELAC A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes[J]. Journal of Experimental Medicine, 1995, 182(6):2091-2096. [28] COLES M C, RAULET D H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells[J]. Journal of Immunology, 2000, 164(5):2412-2418. [29] GODFREY D I, MACDONALD H R, KRONENBERG M, et al. NKT cells: what's in a name?[J]. Nature Reviews Immunology, 2004, 4(3):231-237. DOI: 10.1038/nri1309. [30] BENLAGHA K, KYIN T, BEAVIS A, et al. A thymic precursor to the NKT cell lineage[J]. Science, 2002, 296(5567):553-555. [31] PELLICCI D G, HAMMOND K J L, ULDRICH A P, et al. A natural killer T(NKT)cell developmental pathway involving a thymus-dependent NK1.1- CD4+CD1d-dependent precursor stage[J]. Journal of Experimental Medicine, 2002, 195(7):835-844. |