[1] THRESHER R W, SAITO G E. The stress analysis of human teeth[J]. J Biomech, 1973, 6(5): 443-449. DOI: 10.1016/0021-9290(73)90003-1. [2] SARMAH A, MATHUR A K, GUPTA V, et al. Finite element analysis of dental implant as orthodontic anchorage[J]. J Contemp Dent Pract, 2011, 12(4): 259-264. DOI: 10.5005/jp-journals-10024-1044. [3] FEIZBAKHSH M, KADKHODAEI M, ZANDIAN D N, et al. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: a finite element analysis[J]. Dent Res J(Isfahan), 2017, 14(2): 117-124. DOI: 10.4103/1735-3327.205795. [4] 魏洪涛,张天夫,曾晨光,等.牙颌三维有限元模型生成方法的探讨[J].白求恩医科大学学报, 2000, 26(2): 150-151. DOI: 10.13481/j.1671-587x.2000.02.024. [5] 狄婧,孙哲,尹新芹,等.基于CBCT图像构建下颌第一前磨牙三维有限元模型[J].临床口腔医学杂志, 2013, 29(9): 530-533. [6] HEO K H, LIM Y J, KIM M J, et al. Three-dimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible[J]. J Adv Prosthodont, 2018, 10(2): 138-146. DOI: 10.4047/jap.2018.10.2.138. [7] 张婉君,李金源,马永平,等.口腔正畸中三维有限元法的发展[J].医学研究与教育, 2015, 32(3): 75-81. DOI: 10.3969/j.issn.1674-490X.2015.03.017. [8] 严拥庆,阎贺庆,蔡中,等.方丝弓矫治器三维有限元力学模型的建立[J].上海口腔医学, 2005, 14(3): 301-305. DOI: 10.3969/j.issn.1006-7248.2005.03.024. [9] 相亚宁,胡敏,郭克峰,等.包括TMJ上下颌骨及牙列的MBT直丝弓矫治器三维有限元模型的建立[J].中国实用口腔科杂志, 2008, 1(3): 151-153. DOI: 10.3969/j.issn.1674-1595.2008.03.008. [10] 徐子卿,王特,蒋健羽,等.个性化舌侧上颌前牙滑动内收三维有限元构建与分析[J].上海口腔医学, 2022, 31(2): 162-166. DOI: 10.19439/j.sjos.2022.02.009. [11] HERNÁNDEZ-VÁZQUEZ R A, MARQUET-RIVERA R A, MASTACHE-MIRANDA O A, et al. Comparative numerical analysis between two types of orthodontic wire for the lingual technique, using the finite element method[J]. Appl Bionics Biomech, 2021, 2021: 6658039. DOI: 10.1155/2021/6658039. [12] SINGH G D, CLARK W J. Soft tissue changes in patients with Class II Division 1 malocclusions treated using Twin Block appliances: finite-element scaling analysis[J]. Eur J Orthod, 2003, 25(3): 225-230. DOI: 10.1093/ejo/25.3.225. [13] 林铭,符志锋,陈涛,等.Twin-block矫治器系统三维有限元模型的建立[J].华南国防医学杂志, 2014, 28(1): 30-33. [14] CHAUDHRY A, SIDHU M S, CHAUDHARY G, et al. Evaluation of stress changes in the mandible with a fixed functional appliance: a finite element study[J]. Am J Orthod Dentofacial Orthop, 2015, 147(2): 226-34. DOI: 10.1016/j.ajodo.2014.09.020. [15] 施则安,夏恺,罗良语,等.无托槽隐形矫治器联合微种植体内收并压低上前牙的三维有限元分析[J].华西口腔医学杂志, 2022, 40(5): 589-596. DOI: 10.7518/hxkq.2022.05.013. [16] 余箐,赵刚,叶之慧,等.不同弹性模量的热压膜材料远移上颌磨牙的有限元分析[J].实用口腔医学杂志, 2022, 38(4): 450-454. DOI: 10.3969/j.issn.1001-3733.2022.04.006. [17] JIANG T, WU R Y, WANG J K, et al. Clear aligners for maxillary anterior en masse retraction: a 3D finite element study[J]. Sci Rep, 2020, 10(1): 10156. DOI: 10.1038/s41598-020-67273-2. [18] 曾红,王超,周建萍,等.无托槽隐形矫治不同控根附件对磨牙近中移动力学影响的三维有限元分析[J].上海口腔医学, 2018, 27(2): 139-145. DOI: 10.19439/j.sjos.2018.02.006. [19] HEMANTH M, RAGHUVEER H P, RANI M S, et al. An analysis of the stress induced in the periodontal ligament during extrusion and rotation movements: a finite element method linear study part I[J]. J Contemp Dent Pract, 2015, 16(9): 740-743. DOI: 10.5005/jp-journals-10024-1750. [20] HEMANTH M, RAGHUVEER H P, RANI M S, et al. An analysis of the stress induced in the periodontal ligament during extrusion and rotation movements- part II: a comparison of linear vs nonlinear FEM study[J]. J Contemp Dent Pract, 2015, 16(10): 819-823. DOI: 10.5005/jp-journals-10024-1763. [21] ZENO K G, MUSTAPHA S, AYOUB G, et al. Effect of force direction and tooth angulation during traction of palatally impacted canines: a finite element analysis[J]. Am J Orthod Dentofac Orthop, 2020, 157(3): 377-384. DOI: 10.1016/j.ajodo.2019.04.035. [22] 李志华,陈天云,刘剑,等.上颌第一磨牙的三维有限元模型的建立[J].实用临床医学, 2001, 2(1): 31-33. DOI: 10.3969/j.issn.1009-8194.2001.01.010. [23] LUU B, CRONAUER E A, GANDHI V, et al. A finite element approach for locating the center of resistance of maxillary teeth[J]. J Vis Exp, 2020(158): e60746. DOI: 10.3791/60746. [24] KAWAMURA J, PARK J H, KOJIMA Y, et al. Biomechanical analysis for total mesialization of the maxillary dentition: a finite element study[J]. Am J Orthod Dentofac Orthop, 2021, 159(6): 790-798. DOI: 10.1016/j.ajodo.2020.02.021. [25] CHAE J M, PARK J H, KOJIMA Y, et al. Biomechanical analysis for total distalization of the mandibular dentition: a finite element study[J]. Am J Orthod Dentofac Orthop, 2019, 155(3): 388-397. DOI: 10.1016/j.ajodo.2018.05.014. [26] LOMBARDO L, STEFANONI F, MOLLICA F, et al. Three-dimensional finite-element analysis of a central lower incisor under labial and lingual loads[J]. Prog Orthod, 2012, 13(2): 154-163. DOI: 10.1016/j.pio.2011.10.005. [27] OENNING A C, FREIRE A R, ROSSI A C, et al. Resorptive potential of impacted mandibular third molars: 3D simulation by finite element analysis[J]. Clin Oral Invest, 2018, 22(9): 3195-3203. DOI: 10.1007/s00784-018-2403-4. [28] 罗良语,刘钧.颞下颌关节动态三维有限元模型构建的研究进展[J].口腔医学研究, 2022, 38(8): 715-717. DOI: 10.13701/j.cnki.kqyxyj.2022.08.003. [29] 邵冰莓,刘展.颞下颌关节紊乱综合征患者咀嚼过程中的颞下颌关节有限元接触应力分析[J].医用生物力学, 2021, 36(S1): 322. [30] SHU J H, LUO H T, ZHANG Y L, et al. 3D printing experimental validation of the finite element analysis of the maxillofacial model[J]. Front Bioeng Biotechnol, 2021, 9: 694140. DOI: 10.3389/fbioe.2021.694140. [31] LAI L F, HUANG C Y, ZHOU F, et al. Finite elements analysis of the temporomandibular joint disc in patients with intra-articular disorders[J]. BMC Oral Health, 2020, 20(1): 93. DOI: 10.1186/s12903-020-01074-x. [32] AKI?瘙塁 H, DORUK C. Dentofacial effects of fixed functional appliances with or without mini screw anchorage in the treatment of class II division I malocclusion: a finite element analysis[J]. Turk J Orthod, 2018, 31(1): 7-12. DOI: 10.5152/TurkJOrthod.2018.17026. [33] BUYUKCAVUS M H, KALE B. Effects of different types of maxillary protraction on maxilla with finite element analysis[J]. J Pak Med Assoc, 2021, 71(3): 877-882. DOI: 10.47391/JPMA.1087. [34] 王梦含,葛振林,田黎,等.三种上颌快速扩弓方式扩弓效果的三维有限元分析[J].中华口腔医学杂志, 2017, 52(11): 6. DOI: 10.3760/cma.j.issn.1002-0098.2017.11.006. |