Journal of Hebei Medical College for Continuing Education ›› 2021, Vol. 38 ›› Issue (6): 27-35.DOI: 10.3969/j.issn.1674-490X.2021.06.005
Previous Articles Next Articles
Received:
2021-07-14
Online:
2021-12-25
Published:
2021-12-25
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: //yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2021.06.005
[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. DOI: 10.3322/caac.21551. [2] FRANKLIN W A. Pathology of lung cancer[J]. J Thorac Imaging, 2000, 15(1): 3-12. DOI: 10.1097/00005382-200001000-00003. [3] MAZZONE P, OBUCHOWSKI N, MEKHAIL T, et al. Lung cancer screening: is it time for a change in policy? [J]. Clevel Clin J Med, 2007, 74(6): 441-448. DOI: 10.3949/ccjm.74.6.441. [4] HAWKINS S, WANG H, LIU Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol, 2016, 11(12): 2120-2128. DOI: 10.1016/j.jtho.2016.07.002. [5] WU W M, PARMAR C, GROSSMANN P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology[J]. Front Oncol, 2016, 6: 71. DOI: 10.3389/fonc.2016.00071. [6] ZHANG B, TIAN J, DONG D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2017, 23(15): 4259-4269. DOI: 10.1158/1078-0432.ccr-16-2910. [7] O'CONNOR J P, ROSE C J, WATERTON J C, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome[J]. Clin Cancer Res, 2015, 21(2): 249-257. DOI: 10.1158/1078-0432.ccr-14-0990. [8] LUSTBERG T, VAN SOEST J, GOODING M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer[J]. Radiother Oncol, 2018, 126(2): 312-317. DOI: 10.1016/j.radonc.2017.11.012. [9] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036. [10] 梁田, 谢晟. 影像组学概述及其在肺部疾病中的应用[J]. 中日友好医院学报, 2019, 33(1): 35-37. DOI: 10.3969/j.issn.1001-0025.2019.01.010. [11] RIOS VELAZQUEZ E, AERTS H J W L, GU Y H, et al. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen[J]. Radiother Oncol, 2012, 105(2): 167-173. DOI: 10.1016/j.radonc.2012.09.023. [12] PARMAR C, RIOS VELAZQUEZ E, LEIJENAAR R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation[J]. PLoS One, 2014, 9(7): e102107. DOI: 10.1371/journal.pone.0102107. [13] BRAHIM A S, ABDLHAMID E H, AICHA M, et al. Lung CT image segmentation using deep neural networks[J]. Proce Com Sci, 2018, 127: 109-113. DOI: 10.1016/j.procs.2018.01.104. [14] KOÇAK B, DURMAZ E??塁, ATE??塁 E, et al. Radiomics with artificial intelligence: a practical guide for beginners[J]. Diagn Interv Radiol, 2019, 25(6): 485-495. DOI: 10.5152/dir.2019.19321. [15] AVANZO M, STANCANELLO J, PIRRONE G, et al. Radiomics and deep learning in lung cancer[J]. Strahlenther Onkol, 2020, 196(10): 879-887. DOI: 10.1007/s00066-020-01625-9. [16] HE L, HUANG Y, MA Z, et al. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule[J]. Sci Rep, 2016, 6: 34921. DOI: 10.1038/srep34921. [17] KAKINO R, NAKAMURA M, MITSUYOSHI T, et al. Comparison of radiomic features in diagnostic CT images with and without contrast enhancement in the delayed phase for NSCLC patients[J]. Phys Med, 2020, 69: 176-182. DOI: 10.1016/j.ejmp.2019.12.019. [18] ZHAO B, TAN Y, TSAI W Y, et al. Exploring variability in CT characterization of tumors: a preliminary phantom study[J]. Transl Oncol, 2014, 7(1): 88-93. DOI: 10.1593/tlo.13865. [19] KIM Y J, LEE H J, KIM KG, et al. The effect of CT scan parameters on the measurement of CT radiomic features: a lung nodule phantom study[J]. Comput Math Methods Med, 2019,2019:8790694. DOI: 10.1155/2019/8790694. [20] PARK S, LEE S M, DO K H, et al. Deep learning algorithm for reducing CT slice thickness: effect on reproducibility of radiomic features in lung cancer[J]. Korean J Radiol, 2019, 20(10): 1431. DOI: 10.3348/kjr.2019.0212. [21] PARK S, LEE S M, KIM S, et al. Performance of radiomics models for survival prediction in non-small-cell lung cancer: influence of CT slice thickness[J]. Eur Radiol, 2021, 31(5): 2856-2865. DOI: 10.1007/s00330-020-07423-2. [22] DENNIE C, THORNHILL R, SETHI-VIRMANI V, et al. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules[J]. Quant Imaging Med Surg, 2016, 6(1): 6-15. DOI: 10.3978/j.issn.2223-4292.2016.02.01. [23] ALILOU M, BEIG N, OROOJI M, et al. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT[J]. Med Phys, 2017, 44(7): 3556-3569. DOI: 10.1002/mp.12208. [24] OROOJI M, ALILOU M, SAGAR RAKSHIT M D, et al. Combination of computer extracted shape and texture features enables discrimination of granulomas from adenocarcinoma on chest computed tomography[J]. J Med Imaging(Bellingham), 2018, 5(2): 024501. DOI: 10.1117/1.JMI.5.2.024501. [25] BEIG N, KHORRAMI M, ALILOU M, et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas[J]. Radiology, 2019, 290(3): 783-792. DOI: 10.1148/radiol.2018180910. [26] 朱静, 肖欢, 周莹, 等. 影像组学在鉴别原发性肺癌与肉芽肿疾病中的应用[J]. 实用放射学杂志, 2020, 2(36): 202-207. DOI: 10.3969/j.issn.1002-1671.2020.02.008. [27] KETAI L. Tuberculosis and the prospects for lung cancer screening worldwide[J]. Radiology, 2020, 296(1): 189-190. DOI: 10.1148/radiol.2020200696. [28] AKINCI D'ANTONOLI T, FARCHIONE A, LENKOWICZ J, et al. CT radiomics signature of tumor and peritumoral lung parenchyma to predict nonsmall cell lung cancer postsurgical recurrence risk[J]. Acad Radiol, 2020, 27(4): 497-507. DOI: 10.1016/j.acra.2019.05.019. [29] CUI E N, YU T, SHANG S J, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans[J]. World J Clin Cases, 2020, 8(21): 5203-5212. DOI: 10.12998/wjcc.v8.i21.5203. [30] FENG B, CHEN X M, CHEN Y H, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule[J]. Eur J Radiol, 2020, 128: 109022. DOI: 10.1016/j.ejrad.2020.109022. [31] BAO F, CHEN X M, CHEN Y H, et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas[J]. Eur Radiol, 2020, 30(12): 6497-6507. DOI: 10.1007/s00330-020-07024-z. [32] DU D Y, GU J M, CHEN X H, et al. Integration of PET/CT radiomics and semantic features for differentiation between active pulmonary tuberculosis and lung cancer[J]. Mol Imaging Biol, 2021, 23(2): 287-298. DOI: 10.1007/s11307-020-01550-4. [33] LV W, YUAN Q Y, WANG Q S, et al. Radiomics analysis of PET and CT components of PET/CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma[J]. Mol Imaging Biol, 2019, 21(5): 954-964. DOI: 10.1007/s11307-018-01304-3. [34] HUELLNER M W, SCHWIZER B, BURGER I, et al. Inflammatory pseudotumor of the lung with high FDG uptake[J]. Clin Nucl Med, 2010, 35(9): 722-723. DOI: 10.1097/rlu.0b013e3181ea33d0. [35] BASU S, UTPAT K, JOSHI J. 18F-FDG PET/CT imaging features of IgG4-related pulmonary inflammatory pseudotumor at initial diagnosis and during early treatment monitoring[J]. J Nucl Med Technol, 2016, 44(3): 207-209. DOI: 10.2967/jnmt.115.168450. [36] LIU C, MA C, DUAN J, et al. Using CT texture analysis to differentiate between peripheral lung cancer and pulmonary inflammatory pseudotumor[J]. BMC Med Imaging, 2020, 20(1): 75. DOI: 10.1186/s12880-020-00475-2. [37] RIVERA E, GESTHALTER Y, VANDERLAAN P, et al. Pulmonary sclerosing pneumocytoma[J]. J Bronchol Interv Pulmonol, 2018, 25(4): e54-e56. DOI: 10.1097/lbr.0000000000000508. [38] HAN J, XIANG H, RIDLEY W E, et al. Tail sign: pulmonary sclerosing pneumocytoma[J]. J Med Imaging Radiat Oncol, 2018, 62(Suppl 1): 49. DOI: 10.1111/1754-9485.35_12785. [39] NI X Q, YIN H K, FAN G H, et al. Differentiation of pulmonary sclerosing pneumocytoma from solid malignant pulmonary nodules by radiomic analysis on Multiphasic CT[J]. J Appl Clin Med Phys, 2021, 22(2): 158-164. DOI: 10.1002/acm2.13154. [40] GUAN X J, WANG S Z, KUANG P D, et al. The usefulness of imaging quantification in discriminating non-calcified pulmonary hamartoma from adenocarcinoma[J]. Front Oncol, 2020, 10: 568069. DOI: 10.3389/fonc.2020.568069. [41] YANG Y, LI K, SUN D, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as pure ground-glass nodules: differentiation using enhanced dual-source dual-energy CT[J]. AJR Am J Roentgenol, 2019, 213(3): W114-W122. DOI: 10.2214/ajr.19.21245. [42] SUN Y L, LI C, JIN L, et al. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction[J]. Eur Radiol, 2020, 30(7): 3650-3659. DOI: 10.1007/s00330-020-06776-y. [43] DAI C Y, XIE H K, SU H, et al. Tumor spread through air spaces affects the recurrence and overall survival in patients with lung adenocarcinoma >2 to 3 cm[J]. J Thorac Oncol, 2017, 12(7): 1052-1060. DOI: 10.1016/j.jtho.2017.03.020. [44] JIANG C S, LUO Y, YUAN J L, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(7): 4050-4057. DOI: 10.1007/s00330-020-06694-z. [45] JIA T Y, XIONG J F, LI X Y, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling[J]. Eur Radiol, 2019, 29(9): 4742-4750. DOI: 10.1007/s00330-019-06024-y. [46] BURRELL R A, MCGRANAHAN N, BARTEK J, et al. The causes and consequences of genetic heterogeneity in cancer evolution[J]. Nature, 2013, 501(7467): 338-345. DOI: 10.1038/nature12625. [47] RIZZO S, PETRELLA F, BUSCARINO V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol, 2016, 26(1): 32-42. DOI: 10.1007/s00330-015-3814-0. [48] DE BRUIN E C, MCGRANAHAN N, MITTER R, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution[J]. Science, 2014, 346(6206): 251-256. DOI: 10.1126/science.1253462. [49] THRALL J H. Moreton lecture: imaging in the age of precision medicine[J]. J Am Coll Radiol, 2015, 12(10): 1106-1111. DOI: 10.1016/j.jacr.2015.06.003. [50] BAK S H, PARK H, LEE H Y, et al. Imaging genotyping of functional signaling pathways in lung squamous cell carcinoma using a radiomics approach[J]. Sci Rep, 2018, 8(1): 1-9. DOI: 10.1038/s41598-018-21706-1. [51] REN C Y, ZHANG J P, QI M, et al. Machine learning based on clinico-biological features integrated(18)F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1538-1549. DOI: 10.1007/s00259-020-05065-6. [52] TANG X, XU X P, HAN Z P, et al. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer[J]. Biomed Eng Online, 2020, 19(1): 1-17. DOI: 10.1186/s12938-019-0744-0. |
[1] | WU Chunmei, YIN Xiaoping. Advances on radiomics in adrenal adenoma [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(3): 29-34. |
[2] | SUI Lianyu, YIN Xiaoping, WANG Jianing. Developments on radiogenomics based on MRI in lung cancer brain metastases [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(1): 25-34. |
[3] | . [J]. Journal of Hebei Medical College for Continuing Education, 2020, 37(6): 23-28. |
[4] | . [J]. Journal of Hebei Medical College for Continuing Education, 2020, 37(5): 14-20. |
[5] | ZHANG Jine,CHI Liwei,ZANG Yu. Developments on symptom clusters in patients with advanced lung cancer [J]. Medical Reserch and Education, 2016, 33(5): 49-52. |
[6] | LUO Chun, ZHANG Jianjun, HU Ling, WANG Kunjie, LIU Tao, HAN Yuejuan. Clinical observation of Ginkgo biloba injection in treating hypercoagulable states of patients with advanced lung cancer [J]. Medical Reserch and Education, 2014, 31(6): 53-56. |
[7] | WANG Ying,ZHANG Xiaopeng. Relationship between expression of PTEN and survival prognosis of NSCLC [J]. Medical Reserch and Education, 2014, 31(1): 21-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||