医学研究与教育 ›› 2022, Vol. 39 ›› Issue (2): 16-23.DOI: 10.3969/j.issn.1674-490X.2022.02.003
位亚利,孙珵珵,王晓春
收稿日期:
2021-12-17
出版日期:
2022-04-25
发布日期:
2022-04-25
通讯作者:
王晓春(1973—),男,河北唐县人,主任医师,博士,硕士生导师,主要从事乳腺外科治疗研究。E-mail: oud548723@sina.com
作者简介:
位亚利(1995—),女,河北秦皇岛人,医师,在读硕士,主要从事乳腺癌抗血管治疗研究。 E-mail: 15931857656@163.com
WEI Yali,SUN Chengcheng,WANG Xiaochun
Received:
2021-12-17
Online:
2022-04-25
Published:
2022-04-25
摘要: 血管拟态是一种特殊的血管生成模式,其管样结构由肿瘤细胞而非传统的内皮细胞构成,为肿瘤的生长、侵袭和转移提供营养。近年来,人们发现血管拟态与多种恶性肿瘤的预后、侵袭、转移和耐药性有关。目前普遍认为血管拟态和血管生成依赖于一些共同的机制。而且也有人认为血管拟态的形成是导致抗血管生成药物产生耐药性的原因之一。现对目前对乳腺癌中血管拟态形成的机制,包括相关的信号通路以及肿瘤干细胞、上皮间质化和抗血管生成治疗等研究成果做一综述,并且将对血管拟态作为乳腺癌治疗靶点的意义以及未来的发展方向进行展望。
中图分类号:
位亚利,孙珵珵,王晓春. 血管拟态在乳腺癌中的研究进展[J]. 医学研究与教育, 2022, 39(2): 16-23.
WEI Yali,SUN Chengcheng,WANG Xiaochun. Advances on vasculogenic mimicry in breast cancer[J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(2): 16-23.
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.DOI: 10.3322/caac.21660. [2] BIANCHINI G, BALKO J M, MAYER I A, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease[J]. Nat Rev Clin Oncol, 2016, 13(11): 674-690. DOI: 10.1038/nrclinonc.2016.66. [3] GEYER F C, PAREJA F, WEIGELT B, et al. The spectrum of triple-negative breast disease: high- and low-grade lesions[J]. Am J Pathol, 2017,187(10): 2139-2151. DOI: 10.1016/j.ajpath.2017.03.016. [4] FOLKMAN J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21): 1182-1186. DOI: 10.1056/NEJM197111182852108. [5] JIANG X J, WANG J, DENG X Y, et al. The role of microenvironment in tumor angiogenesis[J].J Exp Clin Cancer Res, 2020, 39(1): 204. DOI: 10.1186/s13046-020-01709-5. [6] WEI F, WANG D, WEI J Y, et al. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance[J].Cell Mol Life Sci, 2021, 78(1): 173-193. DOI: 10.1007/s00018-020-03581-0. [7] VIALLARD C, LARRIVÉE B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets[J]. Angiogenesis, 2017, 20(4): 409-426. DOI: 10.1007/s10456-017-9562-9. [8] YURA Y, CHONG B S H, JOHNSON R D, et al. Endothelial cell-specific redox gene modulation inhibits angiogenesis but promotes B16F0 tumor growth in mice[J]. FASEB J, 2019, 33(12): 14147-14158. DOI: 10.1096/fj.201900786R. [9] MANIOTIS A J, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI: 10.1016/S0002-9440(10)65173-5. [10] IZAWA Y, KASHII-MAGARIBUCHI K, YOSHIDA K, et al. Stem-like human breast cancer cells initiate vasculogenic mimicry on matrigel[J]. Acta Histochem Cytochem, 2018, 51(6): 173-183. DOI: 10.1267/ahc.18041. [11] SUN W, FAN Y Z, ZHANG W Z, et al. A pilot histomorphology and hemodynamic of vasculogenic mimicry in gallbladder carcinomas in vivo and in vitro[J]. J Exp Clin Cancer Res, 2011, 30(1): 46. DOI: 10.1186/1756-9966-30-46. [12] MILLIMAGGI D, MARI M, ASCENZO S D, et al. Vasculogenic mimicry of human ovarian cancer cells: role of CD147[J]. Int J Oncol, 2009, 35(6): 1423-1428. DOI: 10.3892/ijo_00000460. [13] YUE W Y, CHEN Z P. Does vasculogenic mimicry exist in astrocytoma? [J]. J Histochem Cytochem, 2005, 53(8): 997-1002. DOI: 10.1369/jhc.4A6521.2005. [14] CAI X S, JIA Y W, MEI J, et al. Tumor blood vessels formation in osteosarcoma: vasculogenesis mimicry[J]. Chin Med J(Engl), 2004, 117(1): 94-98. [15] VARTANIAN A A. Signaling pathways in tumor vasculogenic mimicry[J]. Biochemistry(Mosc), 2012, 77(9): 1044-1055. DOI: 10.1134/S000629791209012X. [16] LIU X, WANG J H, LI S, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase/ERK-MMP-laminin5γ2 signaling pathway[J]. Cancer Sci, 2015, 106(7): 857-866. DOI: 10.1111/cas.12684. [17] ANDONEGUI-ELGUERA M A, ALFARO-MORA Y, CÁCERES-GUTIÉRREZ R, et al. An overview of vasculogenic mimicry in breast cancer[J]. Front Oncol, 2020, 10: 220. DOI: 10.3389/fonc.2020.00220. [18] VANNINI I, FANINI F, FABBRI M. Emerging roles of microRNAs in cancer[J]. Curr Opin Genet Dev, 2018, 48: 128-133. DOI: 10.1016/j.gde.2018.01.001. [19] LI G X, HUANG M, CAI Y Q, et al. miR-141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression[J]. Mol Med Rep, 2018, 18(2): 1395-1404. DOI: 10.3892/mmr.2018.9108. [20] LIM D, CHO J G, YUN E, et al. MicroRNA 34a-AXL axis regulates vasculogenic mimicry formation in breast cancer cells[J]. Genes, 2020, 12(1): 9. DOI: 10.3390/genes12010009. [21] AN G L, LU F, HUANG S K, et al. Effects of miR 93 on epithelial to mesenchymal transition and vasculogenic mimicry in triple negative breast cancer cells[J]. Molecular Medicine Reports, 2021, 23(1): 30. DOI: 10.3892/mmr.2020.11668. [22] YI M, TAN Y X, WANG L, et al. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development[J]. Cell Mol Life Sci, 2020, 77(21): 4325-4346. DOI: 10.1007/s00018-020-03539-2. [23] RISAU W. Mechanisms of angiogenesis[J]. Nature, 1997, 386(6626): 671-674. DOI: 10.1038/386671a0. [24] PRAGER B C, XIE Q, BAO S D, et al. Cancer stem cells: the architects of the tumor ecosystem[J]. Cell Stem Cell, 2019, 24(1): 41-53. DOI: 10.1016/j.stem.2018.12.009. [25] SUN H Z, YAO N, CHENG S Q, et al. Cancer stem-like cells directly participate in vasculogenic mimicry channels in triple-negative breast cancer[J]. Cancer Biol Med, 2019, 16(2): 299-311. DOI: 10.20892/j.issn.2095-3941.2018.0209. [26] LIU T J, SUN B C, ZHAO X L, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene, 2013, 32(5): 544-553. DOI: 10.1038/onc.2012.85. [27] GONG W C, SUN B C, SUN H Z, et al. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells[J].Am J Cancer Res, 2017, 7(3): 503-517. [28] GONG W C, SUN B C, ZHAO X L, et al. Nodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway[J]. Oncotarget, 2016, 7(43): 70152-70167. DOI: 10.18632/oncotarget.12161. [29] HILL B S, SARNELLA A, D’AVINO G, et al. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer[J]. Semin Cancer Biol, 2020, 60: 202-213. DOI: 10.1016/j.semcancer.2019.07.028. [30] INOUE T, UMEZAWA A, TAKENAKA T, et al. The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models[J]. Kidney Int, 2015, 87(1): 233-238. DOI: 10.1038/ki.2014.235. [31] PONNUSAMY M P, SESHACHARYULU P, LAKSHMANAN I, et al. Emerging role of mucins in epithelial to mesenchymal transition[J]. Curr Cancer Drug Targets, 2013, 13(9): 945-956. DOI: 10.2174/15680096113136660100. [32] LIU T J, ZHAO X L, ZHENG X, et al. The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas[J]. Int J Oncol, 2020, 56(3): 750-760. DOI: 10.3892/ijo.2020.4972. [33] ZHANG Y, WEINBERG R A. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. DOI: 10.1007/s11684-018-0656-6. [34] CELIÉ-TERRASSA T, JOLLY M K. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis[J]. Cold Spring Harb Perspect Med, 2020, 10(7): a036905. DOI: 10.1101/cshperspect.a036905. [35] SHIBUE T, WEINBERG R A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications[J]. Nat Rev Clin Oncol, 2017, 14(10): 611-629. DOI: 10.1038/nrclinonc.2017.44. [36] O'CONOR C J, CHEN T, GONZÁLEZ I, et al. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker[J]. Biomark Med, 2018, 12(7): 813-820. DOI: 10.2217/bmm-2017-0398. [37] MITRA D, BHATTACHARYYA S, ALAM N, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast[J]. Breast Cancer Res Treat, 2020, 179(2): 359-370. DOI: 10.1007/s10549-019-05482-8. [38] BRANTLEY-SIEDERS D M, JIANG A X, SARMA K, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome[J]. PLoS One, 2011, 6(9): e24426. DOI: 10.1371/journal.pone.0024426. [39] LABELLE M, SCHNITTLER H J, AUST D E, et al. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling[J]. Cancer Res, 2008, 68(5): 1388-1397. DOI: 10.1158/0008-5472.CAN-07-2706. [40] NIE C Y, LV H F, BIE L Y, et al. Hypoxia-inducible factor 1-alpha expression correlates with response to neoadjuvant chemotherapy in women with breast cancer[J]. Medicine, 2018, 97(51): e13551. DOI: 10.1097/MD.0000000000013551. [41] REZAEI M, CAO J H, FRIEDRICH K, et al. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions[J]. Histochem Cell Biol, 2018, 149(1): 15-30. DOI: 10.1007/s00418-017-1619-8. [42] JU R J, LI X T, SHI J F, et al. Liposomes, modified with PTD(HIV-1)peptide, containing epirubicin and celecoxib, to target vasculogenic mimicry channels in invasive breast cancer[J]. Biomaterials, 2014, 35(26): 7610-7621. DOI: 10.1016/j.biomaterials.2014.05.040. [43] ZENG F, JU R J, LIU L, et al. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer[J]. Oncotarget, 2015, 6(34): 36625-36642. DOI: 10.18632/oncotarget.5382. [44] LI S X, ZHANG Q Y, ZHOU L C, et al. Inhibitory effects of compound DMBT on hypoxia-induced vasculogenic mimicry in human breast cancer[J]. Biomed Pharmacother, 2017, 96: 982-992. DOI: 10.1016/j.biopha.2017.11.137. [45] XU M R, WEI P F, SUO M Z, et al. Brucine suppresses vasculogenic mimicry in human triple-negative breast cancer cell line MDA-MB-231[J]. Biomed Res Int, 2019, 2019: 6543230. DOI: 10.1155/2019/6543230. [46] MAHFOUZ N, TAHTOUH R, ALAAEDDINE N, et al. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF1α and VEGF receptors[J]. PLoS One, 2017, 12(6): e0179202. DOI: 10.1371/journal.pone.0179202. [47] ZARRIN B, ZARIFI F, VASEGHI G, et al. Acquired tumor resistance to antiangiogenic therapy: mechanisms at a glance[J]. J Res Med Sci, 2017, 22: 117. DOI: 10.4103/jrms.JRMS_182_17. [48] XIE W, ZHAO H J, WANG F X, et al. A novel humanized Frizzled-7-targeting antibody enhances antitumor effects of Bevacizumab against triple-negative breast cancer via blocking Wnt/β-catenin signaling pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 30. DOI: 10.1186/s13046-020-01800-x. [49] HSIEH M J, LIN C W, SU S C, et al. Effects of miR-34b/miR-892a upregulation and inhibition of ABCB1/ABCB4 on melatonin-induced apoptosis in VCR-resistant oral cancer cells[J]. Mol Ther Nucleic Acids, 2020, 19: 877-889. DOI: 10.1016/j.omtn.2019.12.022. [50] CHENG J, YANG H L, GU C J, et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF1α/ROS/VEGF[J]. Int J Mol Med, 2019, 43(2): 945-955. DOI: 10.3892/ijmm.2018.4021. [51] MAROUFI N F, AMIRI M, DIZAJI B F, et al. Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition(EMT)in breast cancer stem cells[J]. Eur J Pharmacol, 2020, 881: 173282. DOI: 10.1016/j.ejphar.2020.173282. |
[1] | 陈乾,李中. CT淋巴造影技术在乳腺癌前哨淋巴结中的应用[J]. 医学研究与教育, 2023, 40(2): 39-43. |
[2] | 周志强,秦思思,张昕昕,张秀玲,殷倩. 3.0 T磁共振弥散加权成像及动态增强扫描对乳腺癌的诊断价值[J]. 医学研究与教育, 2021, 38(5): 7-14. |
[3] | 王凡,袁正玺,白苗苗,徐月清,田晓红. 以夫妻为中心的心理干预对乳腺癌患者心理健康状况影响的Meta分析[J]. 医学研究与教育, 2021, 38(1): 64-69. |
[4] | 李娜,宋若飘,贾友超,臧爱民. AXL表达与乳腺癌预后及临床病理特征关系的Meta分析[J]. 医学研究与教育, 2020, 37(3): 18-27. |
[5] | 王维娜,赵春兰,梁月勉,王晔兴,张文清. 乳腺癌中Nupr1蛋白及mRNA表达及临床意义[J]. 医学研究与教育, 2020, 37(1): 14-20. |
[6] | 刘岩, 刘雅涵, 谢天皓, 孟庆旭, 靳小石. 乳腺癌中SLC5A8基因的甲基化及转录水平[J]. 医学研究与教育, 2020, 37(1): 36-40. |
[7] | 齐娟,徐妍,李中,赵彬宇. 延续性护理对乳腺癌患者术后功能恢复的影响[J]. 医学研究与教育, 2015, 32(5): 64-66. |
[8] | 张刚,齐娟,李中,林晓萌,蔡倩倩,郝鑫. 浸润性乳腺导管癌与原位导管癌分子标志物的临床研究[J]. 医学研究与教育, 2015, 32(3): 31-35. |
[9] | 林晓萌,史建伟,王健,李中. 78 例乳腺导管内癌临床分析[J]. 医学研究与教育, 2015, 32(1): 26-30. |
[10] | 王淑仙,马蕾,冯惠清,张贺伟. F/T比值在乳腺癌诊断和预后评估中的应用[J]. 医学研究与教育, 2012, 29(3): 53-55. |
[11] | 史春云,王淑仙,冯惠清. 肿瘤标志物CA15-3、CEA和CA125与乳腺癌关系的研究进展[J]. 医学研究与教育, 2012, 29(3): 49-52. |
[12] | 杨永滨,黄建霞,宋文娅,刘海杰,许苗苗,薛娟. Her2/Neu和EGFRvⅢ与乳腺癌发生及浸润的相关性研究[J]. 医学研究与教育, 2012, 29(1): 21-24. |
[13] | 吴煜龙,宋新梅. 肿瘤标志物CEA在乳腺癌中的应用[J]. 医学研究与教育, 2011, 28(4): 32-34. |
[14] | 杜少英,王彦,刘芳. 老年乳腺癌患者围手术期护理进展[J]. 医学研究与教育, 2011, 28(1): 79-82. |
[15] | 王建国,王贯宇,吴煜龙,陈志华,赵禹. 乳腺癌肿瘤标志物CA15-3和CEA联合检测的临床意义[J]. 医学研究与教育, 2011, 28(1): 35-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||