医学研究与教育 ›› 2022, Vol. 39 ›› Issue (5): 1-6.DOI: 10.3969/j.issn.1674-490X.2022.05.001
• 基础医学 • 下一篇
贾娟1,梁思1,陈恒利1,王红杰1,2,3
收稿日期:2022-08-22
出版日期:2022-10-25
发布日期:2022-10-25
通讯作者:
王红杰(1968—),女,河北保定人,主任医师,教授,博士,博士生导师,主要从事麻醉与复苏的临床及基础研究。E-mail: hongjiew68@163.com
作者简介:贾娟(1989—),女,河北保定人,在读博士,主要从事慢性肾脏病、高磷血症和血管钙化研究。 E-mail: jiajuan90@163.com 通信作者:王红杰(1968—),女,河北保定人,主任医师,教授,博士,博士生导师,主要从事麻醉与复苏的临床及基础研究。 E-mail: hongjiew68@163.com
基金资助:JIA Juan1, LIANG Si1, CHEN Hengli1, WANG Hongjie1,2,3
Received:2022-08-22
Online:2022-10-25
Published:2022-10-25
摘要: 血管钙化是慢性肾脏病患者心血管疾病发生及发展的病理基础。高磷血症是导致慢性肾脏病患者发生血管钙化的最主要危险因素。在高磷状态下,微小RNA(microRNA, miRNA)通过转录后负性调控靶细胞表达促进或抑制钙化因子而起到调控血管钙化的作用。因此,鉴定高磷状态下miRNA的异常产生有助于识别表观遗传变化,这些变化可以作为预防和治疗高磷血症诱导的血管钙化的靶点。现综述目前发现的与高磷诱导血管钙化发生有关的miRNA及其作用机制。
中图分类号:
贾娟, 梁思, 陈恒利, 王红杰. miRNA在高磷诱导的血管钙化中的作用[J]. 医学研究与教育, 2022, 39(5): 1-6.
JIA Juan, LIANG Si, CHEN Hengli, WANG Hongjie. The role of microRNA in high phosphorus induced vascular calcification[J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 1-6.
| [1] VIDAL-PETIOT E, GREENLAW N, KALRA P R, et al. Chronic kidney disease has a graded association with death and cardiovascular outcomes in stable coronary artery disease: an analysis of 21, 911 patients from the CLARIFY registry[J]. J Clin Med, 2019, 9(1): 4. DOI: 10.3390/jcm9010004. [2] CANO-MEGÍAS M, GUISADO-VASCO P, BOUARICH H, et al. Coronary calcification as a predictor of cardiovascular mortality in advanced chronic kidney disease: a prospective long-term follow-up study[J]. BMC Nephrol, 2019, 20(1): 188. DOI: 10.1186/s12882-019-1367-1. [3] HE J, REILLY M, YANG W, et al. Risk factors for coronary artery calcium among patients with chronic kidney disease(from the Chronic Renal Insufficiency Cohort Study)[J]. Am J Cardiol, 2012, 110(12): 1735-1741. DOI: 10.1016/j.amjcard.2012.07.044. [4] GRAVESEN E, LERCHE MACE M, NORDHOLM A, et al. Exogenous BMP7 in aortae of rats with chronic uremia ameliorates expression of profibrotic genes, but does not reverse established vascular calcification[J]. PLoS One, 2018, 13(1): e0190820. DOI: 10.1371/journal.pone.0190820. [5] WU W, SHANG Y Q, DAI S L, et al. miR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF[J]. Bratisl Lek Listy, 2017, 118(8): 499-503. DOI: 10.4149/BLL_2017_096. [6] LEE C T, LEE Y T, TAIN Y L, et al. Circulating microRNAs and vascular calcification in hemodialysis patients[J]. J Int Med Res, 2019, 47(7): 2929-2939. DOI: 10.1177/0300060519848949. [7] PANIZO S, NAVES-DÍAZ M, CARRILLO-LÓPEZ N, et al. microRNAs 29b, 133b, and 211 regulate vascular smooth muscle calcification mediated by high phosphorus[J]. J Am Soc Nephrol, 2016, 27(3): 824-834. DOI: 10.1681/ASN.2014050520. [8] SUDO R, SATO F, AZECHI T, et al. miR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells[J]. Genes Cells, 2015, 20(12): 1077-1087. DOI: 10.1111/gtc.12311. [9] DU Y Y, WANG Y, WANG L, et al. Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2[J]. Circ Res, 2011, 108(8): 917-928. DOI: 10.1161/CIRCRESAHA.110.234328. [10] DU Y Y, GAO C, LIU Z Y, et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification[J]. Arterioscler Thromb Vasc Biol, 2012, 32(11): 2580-2588. DOI: 10.1161/ATVBAHA.112.300206. [11] XU T H, QIU X B, SHENG Z T, et al. Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy[J]. J Cell Physiol, 2019, 234(8): 14306-14318. DOI: 10.1002/jcp.28130. [12] HE L B, BI Y, WANG R L, et al. Detection of a 4 bp mutation in the 3'UTR region of goat Sox9 gene and its effect on the growth traits[J]. Animals(Basel), 2020, 10(4): 672. DOI: 10.3390/ani10040672. [13] BALDERMAN J A F, LEE H Y, MAHONEY C E, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification[J]. J Am Heart Assoc, 2012, 1(6): e003905. DOI: 10.1161/JAHA.112.003905. [14] LIN X, LI F, XU F, et al. Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1[J]. Aging, 2019, 11(10): 3182-3197. DOI: 10.18632/aging.101973. [15] 何雷,徐金升,白亚玲,等.miRNA103在高磷诱导的血管平滑肌细胞钙化中的作用[J].山西医科大学学报, 2021, 52(1): 50-55. DOI: 10.13753/j.issn.1007-6611.2021.01.009. [16] GOETTSCH C, RAUNER M, PACYNA N, et al. miR-125b regulates calcification of vascular smooth muscle cells[J]. Am J Pathol, 2011, 179(4): 1594-1600. DOI: 10.1016/j.ajpath.2011.06.016. [17] CHEN N X, KIATTISUNTHORN K, O'NEILLK D, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease(CKD)[J]. PLoS One, 2013, 8(5): e64558. DOI: 10.1371/journal.pone.0064558. [18] WEN P, CAO H D, FANG L, et al. miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment[J]. Exp Cell Res, 2014, 322(2): 302-312. DOI: 10.1016/j.yexcr.2014.01.025. [19] HEO S H, CHO J Y. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP[J]. Int J Biol Sci, 2014, 10(4): 438-447. DOI: 10.7150/ijbs.8095. [20] LIAO X B, ZHANG Z Y, YUAN K, et al. miR-133a modulates osteogenic differentiation of vascular smooth muscle cells[J]. Endocrinology, 2013, 154(9): 3344-3352. DOI: 10.1210/en.2012-2236. [21] QIAO W W, CHEN L, ZHANG M X. microRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells[J]. Cell Physiol Biochem, 2014, 33(6): 1945-1953. DOI: 10.1159/000362971. [22] ZHANG Z M, JIANG W H, YANG H, et al. The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo[J]. Exp Cell Res, 2018, 362(2): 324-331. DOI: 10.1016/j.yexcr.2017.11.033. [23] CUI R R, LI S J, LIU L J, et al. microRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo[J]. Cardiovasc Res, 2012, 96(2): 320-329. DOI: 10.1093/cvr/cvs258. [24] LIN X, XU F, CUI R R, et al. Arterial calcification is regulated via an miR-204/DNMT3a regulatory circuit both in vitro and in female mice[J]. Endocrinology, 2018, 159(8): 2905-2916. DOI: 10.1210/en.2018-00320. [25] SUN W L, WANG N, XU Y. Impact of miR-302b on calcium-phosphorus metabolism and vascular calcification of rats with chronic renal failure by regulating BMP-2/Runx2/osterix signaling pathway[J]. Arch Med Res, 2018, 49(3): 164-171. DOI: 10.1016/j.arcmed.2018.08.002. [26] LIU J H, XIAO X H, SHEN Y Y, et al. microRNA-32 promotes calcification in vascular smooth muscle cells: implications as a novel marker for coronary artery calcification[J]. PLoS One, 2017, 12(3): e0174138. DOI: 10.1371/journal.pone.0174138. [27] XIA Z Y, HU Y, XIE P L, et al. Runx2/miR-3960/miR-2861 positive feedback loop is responsible for osteogenic transdifferentiation of vascular smooth muscle cells[J]. Biomed Res Int, 2015, 2015: 624037. DOI: 10.1155/2015/624037. [28] CHOE N, SHIN S, JOUNG H, et al. The microRNA miR-134-5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells[J]. J Cell Mol Med, 2020, 24(18): 10542-10550. DOI: 10.1111/jcmm.15670. [29] RANGREZ A Y, M'BAYA-MOUTOULA E, METZINGER-LE MEUTH V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223[J]. PLoS One, 2012, 7(10): e47807. DOI: 10.1371/journal.pone.0047807. |
| [1] | 迪力努尔·阿不都赛买提,高静. 糖尿病管理模式的研究进展[J]. 医学研究与教育, 2025, 42(5): 1-7. |
| [2] | 连亚帅,邱永升,高瑞玲,王文华. 围术期精细化液体管理联合细节护理在小儿室间隔修补术中的综合效果评价[J]. 医学研究与教育, 2025, 42(5): 40-46. |
| [3] | 宋朕,吴婷婷,陈蕊肖,焦圣军,姚天宇,田野,路陆. 不同剂量的新型口服抗凝药对高龄患者有效性及安全性的Meta分析[J]. 医学研究与教育, 2025, 42(4): 18-28. |
| [4] | 陈曼玉,侯奥飞,刘丹. 新型肥胖指标与2型糖尿病肾病的相关性分析[J]. 医学研究与教育, 2025, 42(3): 8-15. |
| [5] | 孙嘉悦,柏金秀. 维生素D、铁蛋白与甲状腺功能减退的研究进展[J]. 医学研究与教育, 2025, 42(3): 22-29. |
| [6] | 吴梦,闫雪松,刘雪,李峥. 结缔组织病相关间质性肺病中NLRP3炎症小体作用研究进展[J]. 医学研究与教育, 2025, 42(2): 14-24. |
| [7] | 冯荣,鲁佳慧,胡晋滔,杨迪,李亚芹,崔红根. 前蛋白转化酶枯草溶菌素9抑制剂在急性冠脉综合征患者中的研究进展[J]. 医学研究与教育, 2024, 41(6): 1-8. |
| [8] | 瞿海龙, 张红强, 李建奇, 张玲玲. 由肺看心:急性呼吸窘迫综合征右心单元的改变[J]. 医学研究与教育, 2024, 41(6): 9-15. |
| [9] | 宋朕,陈蕊肖,吴婷婷,焦圣军,路陆,姚天宇,田野. 钠-葡萄糖协同转运蛋白-2抑制剂对急性心肌梗死预后影响的Meta分析[J]. 医学研究与教育, 2024, 41(6): 16-25. |
| [10] | 胡浩然,康佳璐,耿伯雅,田娜,纪彩卿. 妇科全身麻醉腹腔镜手术早期拔除导尿管对患者术后恢复的影响[J]. 医学研究与教育, 2024, 41(6): 51-60. |
| [11] | 赵代鑫, 胡晓军, 晏凯利, 王四坤, 刘恒友. 基于网络Meta分析对比不同钠-葡萄糖协同转运蛋白2抑制剂对慢性心力衰竭患者预后的影响[J]. 医学研究与教育, 2024, 41(5): 1-10. |
| [12] | 张和荟, 刘彦权, 王芬, 陈淑娟, 许庆林. 脓毒性休克液体复苏的最新研究进展[J]. 医学研究与教育, 2024, 41(5): 11-18. |
| [13] | 彭雪莹,王阳阳,陈治,张建光,李慧,张佳庆,刘英华. 羟基红花黄色素A对实验性自身免疫性肝炎小鼠的保护作用[J]. 医学研究与教育, 2024, 41(3): 1-7. |
| [14] | 冯荣,鲁佳慧,李赞,李朝洋,李亚芹,崔红根. 从肠道菌群的角度分析衰弱在冠心病中的作用[J]. 医学研究与教育, 2024, 41(3): 18-24. |
| [15] | 陶杰,张欣欣,李跃军,张明,桑大森. 蛋白尿与估算肾小球滤过率联合对糖尿病患者新发心血管疾病的影响[J]. 医学研究与教育, 2024, 41(3): 31-39. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||