[1] ILIE A C, TARANU S M, STEFANIU R, et al. Chronic coronary syndrome in frail old population[J]. Life, 2022, 12(8): 1133. DOI: 10.3390/life12081133. [2] WANG M, WANG Z N, LEE Y J, et al. Dietary meat, trimethylamine N-oxide-related metabolites, and incident cardiovascular disease among older adults: the cardiovascular health study[J]. Arterioscler Thromb Vasc Biol, 2022, 42(9): e273-e288. DOI: 10.1161/ATVBAHA.121.316533. [3] XU Y S, WANG Y H, LI H W, et al. Altered fecal microbiota composition in older adults with frailty[J]. Front Cell Infect Microbiol, 2021, 11: 696186. DOI: 10.3389/fcimb.2021.696186. [4] IJAZ N, BUTA B, XUE Q L, et al. Interventions for frailty among older adults with cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(5): 482-503. DOI: 10.1016/j.jacc.2021.11.029. [5] OFORI-ASENSO R, CHIN K L, MAZIDI M, et al. Global incidence of frailty and prefrailty among community-dwelling older adults: a systematic review and meta-analysis[J]. JAMA Netw Open, 2019, 2(8): e198398. DOI: 10.1001/jamanetworkopen.2019.8398. [6] SEPU'LVEDA M, ARAUNA D, GARCÍA F, et al. Frailty in aging and the search for the optimal biomarker:a review[J]. Biomedicines, 2022, 10(6): 1426. DOI: 10.3390/biomedicines10061426. [7] GIALLAURIA F, LORENZO A D, VENTURINI E, et al. Frailty in acute and chronic coronary syndrome patients entering cardiac rehabilitation[J]. J Clin Med, 2021, 10(8): 1696. DOI: 10.3390/jcm10081696. [8] BARBALHO S M, TOFANO R J, CHAGAS E F B, et al. Benchside to the bedside of frailty and cardiovascular aging: main shared cellular and molecular mechanisms[J]. Exp Gerontol, 2021, 148: 111302. DOI: 10.1016/j.exger.2021.111302. [9] SHIMONO H, TOKUSHIGE A, KANDA D, et al. Association of preoperative clinical frailty and clinical outcomes in elderly patients with stable coronary artery disease after percutaneous coronary intervention[J]. Heart Vessels, 2023, 38(10): 1205-1217. DOI: 10.1007/s00380-023-02276-3. [10] CAMPO G, MAIETTI E, TONET E, et al. The assessment of scales of frailty and physical performance improves prediction of major adverse cardiac events in older adults with acute coronary syndrome[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(6): 1113-1119. DOI: 10.1093/gerona/glz123. [11] ANAND A, CUDMORE S, ROBERTSON S, et al. Frailty assessment and risk prediction by GRACE score in older patients with acute myocardial infarction[J]. BMC Geriatr, 2020, 20(1): 102. DOI: 10.1186/s12877-020-1500-9. [12] PAVASINI R, MAIETTI E, TONET E, et al. Bleeding risk scores and scales of frailty for the prediction of haemorrhagic events in older adults with acute coronary syndrome: insights from the FRASER study[J].Cardiovasc Drugs Ther, 2019, 33(5): 523-532. DOI: 10.1007/s10557-019-06911-y. [13] DAI J R, LI J, HE X, et al. A relationship among the blood serum levels of interleukin-6, albumin, and 25-hydroxyvitamin D and frailty in elderly patients with chronic coronary syndrome[J]. Aging Med, 2022, 5(1): 17-29. DOI: 10.1002/agm2.12201. [14] XU L, ZHANG J, SHEN S, et al. Clinical frailty scale and biomarkers for assessing frailty in elder inpatients in China[J]. J Nutr Health Aging, 2021, 25(1): 77-83. DOI: 10.1007/s12603-020-1455-8. [15] D'AMICO F, BARONE M, BRIGIDI P, et al. Gut microbiota in relation to frailty and clinical outcomes[J].Curr Opin Clin Nutr Metab Care, 2023, 26(3): 219-225. DOI: 10.1097/MCO.0000000000000926. [16] ILLIANO P, BRAMBILLA R, PAROLINI C. The mutual interplay of gut microbiota, diet and human disease[J]. FEBS J, 2020, 287(5): 833-855. DOI: 10.1111/febs.15217. [17] KOMODROMOU I, ANDREOU E, VLAHOYIANNIS A, et al. Exploring the dynamic relationship between the gut microbiome and body composition across the human lifespan: a systematic review[J]. Nutrients, 2024, 16(5): 660. DOI: 10.3390/nu16050660. [18] RASHIDAH N H, LIM S M, NEOH C F, et al. Differential gut microbiota and intestinal permeability between frail and healthy older adults: a systematic review[J]. Ageing Res Rev, 2022, 82: 101744. DOI: 10.1016/j.arr.2022.101744. [19] RAEVSKY K P, POPOV S P, KONYAEV V V, et al. Features of the intestinal microbiota in the elderly in the development of coronary heart disease[J]. Adv Gerontol, 2023, 36(2): 247-250. [20] KHAN I, KHAN I, KAKAKHEL M A, et al. Comparison of microbial populations in the blood of patients with myocardial infarction and healthy individuals[J]. Front Microbiol, 2022, 13: 845038. DOI: 10.3389/fmicb.2022.845038. [21] KHAN I, KHAN I, USMAN M, et al. Analysis of the blood bacterial composition of patients with acute coronary syndrome and chronic coronary syndrome[J]. Front Cell Infect Microbiol, 2022, 12: 943808. DOI: 10.3389/fcimb.2022.943808. [22] SHEN X Y, LI L H, SUN Z, et al. Gut microbiota and atherosclerosis-focusing on the plaque stability[J]. Front Cardiovasc Med, 2021, 8: 668532. DOI: 10.3389/fcvm.2021.668532. [23] KRISHNAMOORTHY N K, KALYAN M, HEDIYAL T A, et al. Role of the gut bacteria-derived metabolite phenylacetylglutamine in Health and Diseases[J]. ACS Omega, 2024, 9(3): 3164-3172. DOI: 10.1021/acsomega.3c08184. [24] CUNHA R S D, SANTOS A F, BARRETO F C, et al. How do uremic toxins affect the endothelium? [J]. Toxins(Basel), 2020, 12(6). DOI: 10.3390/toxins12060412. [25] O'MORAIN V L, RAMJI D P. The potential of probiotics in the prevention and treatment of atherosclerosis[J]. Mol Nutr Food Res, 2020, 64(4): e1900797. DOI: 10.1002/mnfr.201900797. [26] CHEN W J, ZHANG S, WU J F, et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis[J]. Clin Chim Acta, 2020, 507: 236-241. DOI: 10.1016/j.cca.2020.04.037. [27] VOURAKIS M, MAYER G, ROUSSEAU G. The role of gut microbiota on cholesterol metabolism in atherosclerosis[J]. Int J Mol Sci, 2021, 22(15): 8074. DOI: 10.3390/ijms22158074. [28] BEIGIENE · A, PETRUŠEVIC ˇIENE · D, BARASAITE · V, et al. Frailty and different exercise interventions to improve gait speed in older adults after acute coronary syndrome[J]. Medicina, 2021, 57(12): 1344. DOI: 10.3390/medicina57121344. [29] HAN C Y, MILLER M, YAXLEY A, et al. Effectiveness of combined exercise and nutrition interventions in prefrail or frail older hospitalised patients: a systematic review and meta-analysis[J]. BMJ Open, 2020, 10(12): e040146. DOI: 10.1136/bmjopen-2020-040146. [30] WANG X, LI X Q, DONG Y M. Vitamin D decreases plasma trimethylamine-N-oxide level in mice by regulating gut microbiota[J].Biomed Res Int, 2020, 2020: 9896743. DOI: 10.1155/2020/9896743. [31] LI X X, SU C Y, JIANG Z B, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome[J]. NPJ Biofilms Microbiomes, 2021, 7(1): 36. DOI: 10.1038/s41522-021-00205-8. [32] LIN K Y, WANG X D, LI J, et al. Anti-atherosclerotic effects of geraniin through the gut microbiota-dependent trimethylamine N-oxide(TMAO)pathway in mice[J]. Phytomedicine, 2022, 101: 154104. DOI: 10.1016/j.phymed.2022.154104. [33] ZHANG H X, LAI J, ZHANG L H, et al. The co-regulation of the gut microbiome and host genes might play essential roles in metformin gastrointestinal intolerance[J]. Toxicol Appl Pharmacol, 2023, 481: 116732. DOI: 10.1016/j.taap.2023.116732. [34] LIANG X, ZHANG Z, LV Y Y, et al. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis[J]. Nutrition, 2020, 79/80: 110941. DOI: 10.1016/j.nut.2020.110941. |