医学研究与教育 ›› 2022, Vol. 39 ›› Issue (5): 1-6.DOI: 10.3969/j.issn.1674-490X.2022.05.001
• 基础医学 • 下一篇
贾娟1,梁思1,陈恒利1,王红杰1,2,3
收稿日期:
2022-08-22
出版日期:
2022-10-25
发布日期:
2022-10-25
通讯作者:
王红杰(1968—),女,河北保定人,主任医师,教授,博士,博士生导师,主要从事麻醉与复苏的临床及基础研究。E-mail: hongjiew68@163.com
作者简介:
贾娟(1989—),女,河北保定人,在读博士,主要从事慢性肾脏病、高磷血症和血管钙化研究。 E-mail: jiajuan90@163.com 通信作者:王红杰(1968—),女,河北保定人,主任医师,教授,博士,博士生导师,主要从事麻醉与复苏的临床及基础研究。 E-mail: hongjiew68@163.com
基金资助:
JIA Juan1, LIANG Si1, CHEN Hengli1, WANG Hongjie1,2,3
Received:
2022-08-22
Online:
2022-10-25
Published:
2022-10-25
摘要: 血管钙化是慢性肾脏病患者心血管疾病发生及发展的病理基础。高磷血症是导致慢性肾脏病患者发生血管钙化的最主要危险因素。在高磷状态下,微小RNA(microRNA, miRNA)通过转录后负性调控靶细胞表达促进或抑制钙化因子而起到调控血管钙化的作用。因此,鉴定高磷状态下miRNA的异常产生有助于识别表观遗传变化,这些变化可以作为预防和治疗高磷血症诱导的血管钙化的靶点。现综述目前发现的与高磷诱导血管钙化发生有关的miRNA及其作用机制。
中图分类号:
贾娟, 梁思, 陈恒利, 王红杰. miRNA在高磷诱导的血管钙化中的作用[J]. 医学研究与教育, 2022, 39(5): 1-6.
JIA Juan, LIANG Si, CHEN Hengli, WANG Hongjie. The role of microRNA in high phosphorus induced vascular calcification[J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 1-6.
[1] VIDAL-PETIOT E, GREENLAW N, KALRA P R, et al. Chronic kidney disease has a graded association with death and cardiovascular outcomes in stable coronary artery disease: an analysis of 21, 911 patients from the CLARIFY registry[J]. J Clin Med, 2019, 9(1): 4. DOI: 10.3390/jcm9010004. [2] CANO-MEGÍAS M, GUISADO-VASCO P, BOUARICH H, et al. Coronary calcification as a predictor of cardiovascular mortality in advanced chronic kidney disease: a prospective long-term follow-up study[J]. BMC Nephrol, 2019, 20(1): 188. DOI: 10.1186/s12882-019-1367-1. [3] HE J, REILLY M, YANG W, et al. Risk factors for coronary artery calcium among patients with chronic kidney disease(from the Chronic Renal Insufficiency Cohort Study)[J]. Am J Cardiol, 2012, 110(12): 1735-1741. DOI: 10.1016/j.amjcard.2012.07.044. [4] GRAVESEN E, LERCHE MACE M, NORDHOLM A, et al. Exogenous BMP7 in aortae of rats with chronic uremia ameliorates expression of profibrotic genes, but does not reverse established vascular calcification[J]. PLoS One, 2018, 13(1): e0190820. DOI: 10.1371/journal.pone.0190820. [5] WU W, SHANG Y Q, DAI S L, et al. miR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF[J]. Bratisl Lek Listy, 2017, 118(8): 499-503. DOI: 10.4149/BLL_2017_096. [6] LEE C T, LEE Y T, TAIN Y L, et al. Circulating microRNAs and vascular calcification in hemodialysis patients[J]. J Int Med Res, 2019, 47(7): 2929-2939. DOI: 10.1177/0300060519848949. [7] PANIZO S, NAVES-DÍAZ M, CARRILLO-LÓPEZ N, et al. microRNAs 29b, 133b, and 211 regulate vascular smooth muscle calcification mediated by high phosphorus[J]. J Am Soc Nephrol, 2016, 27(3): 824-834. DOI: 10.1681/ASN.2014050520. [8] SUDO R, SATO F, AZECHI T, et al. miR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells[J]. Genes Cells, 2015, 20(12): 1077-1087. DOI: 10.1111/gtc.12311. [9] DU Y Y, WANG Y, WANG L, et al. Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2[J]. Circ Res, 2011, 108(8): 917-928. DOI: 10.1161/CIRCRESAHA.110.234328. [10] DU Y Y, GAO C, LIU Z Y, et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification[J]. Arterioscler Thromb Vasc Biol, 2012, 32(11): 2580-2588. DOI: 10.1161/ATVBAHA.112.300206. [11] XU T H, QIU X B, SHENG Z T, et al. Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy[J]. J Cell Physiol, 2019, 234(8): 14306-14318. DOI: 10.1002/jcp.28130. [12] HE L B, BI Y, WANG R L, et al. Detection of a 4 bp mutation in the 3'UTR region of goat Sox9 gene and its effect on the growth traits[J]. Animals(Basel), 2020, 10(4): 672. DOI: 10.3390/ani10040672. [13] BALDERMAN J A F, LEE H Y, MAHONEY C E, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification[J]. J Am Heart Assoc, 2012, 1(6): e003905. DOI: 10.1161/JAHA.112.003905. [14] LIN X, LI F, XU F, et al. Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1[J]. Aging, 2019, 11(10): 3182-3197. DOI: 10.18632/aging.101973. [15] 何雷,徐金升,白亚玲,等.miRNA103在高磷诱导的血管平滑肌细胞钙化中的作用[J].山西医科大学学报, 2021, 52(1): 50-55. DOI: 10.13753/j.issn.1007-6611.2021.01.009. [16] GOETTSCH C, RAUNER M, PACYNA N, et al. miR-125b regulates calcification of vascular smooth muscle cells[J]. Am J Pathol, 2011, 179(4): 1594-1600. DOI: 10.1016/j.ajpath.2011.06.016. [17] CHEN N X, KIATTISUNTHORN K, O'NEILLK D, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease(CKD)[J]. PLoS One, 2013, 8(5): e64558. DOI: 10.1371/journal.pone.0064558. [18] WEN P, CAO H D, FANG L, et al. miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment[J]. Exp Cell Res, 2014, 322(2): 302-312. DOI: 10.1016/j.yexcr.2014.01.025. [19] HEO S H, CHO J Y. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP[J]. Int J Biol Sci, 2014, 10(4): 438-447. DOI: 10.7150/ijbs.8095. [20] LIAO X B, ZHANG Z Y, YUAN K, et al. miR-133a modulates osteogenic differentiation of vascular smooth muscle cells[J]. Endocrinology, 2013, 154(9): 3344-3352. DOI: 10.1210/en.2012-2236. [21] QIAO W W, CHEN L, ZHANG M X. microRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells[J]. Cell Physiol Biochem, 2014, 33(6): 1945-1953. DOI: 10.1159/000362971. [22] ZHANG Z M, JIANG W H, YANG H, et al. The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo[J]. Exp Cell Res, 2018, 362(2): 324-331. DOI: 10.1016/j.yexcr.2017.11.033. [23] CUI R R, LI S J, LIU L J, et al. microRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo[J]. Cardiovasc Res, 2012, 96(2): 320-329. DOI: 10.1093/cvr/cvs258. [24] LIN X, XU F, CUI R R, et al. Arterial calcification is regulated via an miR-204/DNMT3a regulatory circuit both in vitro and in female mice[J]. Endocrinology, 2018, 159(8): 2905-2916. DOI: 10.1210/en.2018-00320. [25] SUN W L, WANG N, XU Y. Impact of miR-302b on calcium-phosphorus metabolism and vascular calcification of rats with chronic renal failure by regulating BMP-2/Runx2/osterix signaling pathway[J]. Arch Med Res, 2018, 49(3): 164-171. DOI: 10.1016/j.arcmed.2018.08.002. [26] LIU J H, XIAO X H, SHEN Y Y, et al. microRNA-32 promotes calcification in vascular smooth muscle cells: implications as a novel marker for coronary artery calcification[J]. PLoS One, 2017, 12(3): e0174138. DOI: 10.1371/journal.pone.0174138. [27] XIA Z Y, HU Y, XIE P L, et al. Runx2/miR-3960/miR-2861 positive feedback loop is responsible for osteogenic transdifferentiation of vascular smooth muscle cells[J]. Biomed Res Int, 2015, 2015: 624037. DOI: 10.1155/2015/624037. [28] CHOE N, SHIN S, JOUNG H, et al. The microRNA miR-134-5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells[J]. J Cell Mol Med, 2020, 24(18): 10542-10550. DOI: 10.1111/jcmm.15670. [29] RANGREZ A Y, M'BAYA-MOUTOULA E, METZINGER-LE MEUTH V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223[J]. PLoS One, 2012, 7(10): e47807. DOI: 10.1371/journal.pone.0047807. |
[1] | 殷小平,邢立红,卓利勇,张宇,王佳宁,刘珊,陈新星. 磁共振成像增强肝胆期不同病理分级肝内肿块型胆管癌的信号特征分析[J]. 医学研究与教育, 2023, 40(5): 1-7. |
[2] | 邓童,甘璐,李璐,钟聪敏,范建辉. 不同受体激动剂诱发大鼠去内皮尾动脉环的收缩反应[J]. 医学研究与教育, 2023, 40(5): 15-21. |
[3] | 史轶群,刘健,侯昌,李兴丽,张倬恺,马承前. 心肌桥相关专利技术进展[J]. 医学研究与教育, 2023, 40(5): 22-28. |
[4] | 罗发梦,刘蓉,林威娜,张海燕,陶德智. 炎症性肠病患者延续性护理体验和需求的质性研究[J]. 医学研究与教育, 2023, 40(5): 66-71. |
[5] | 张红强,张冰,瞿海龙. 急性呼吸窘迫综合征顽固性低氧的挽救治疗策略[J]. 医学研究与教育, 2023, 40(4): 31-36. |
[6] | 庞琳,尹园园,井坤娟,刘冬雪,张程婕. 延续护理在糖尿病足患者中应用的范围综述[J]. 医学研究与教育, 2023, 40(4): 67-74. |
[7] | 范文甜,许亚欣,刘艺珂,陈春红. 急性ST段抬高型心肌梗死患者经皮冠状动脉介入治疗术后无复流现象的治疗进展[J]. 医学研究与教育, 2023, 40(3): 38-45. |
[8] | 贾海燕,张卫锋,贾辛未,宋万庆,孙微微,王乾一. 急性心肌梗死不同冠脉介入治疗时机的预后分析[J]. 医学研究与教育, 2023, 40(2): 25-32. |
[9] | 路潇,梁璐. 血磷在脓毒症中临床意义的研究进展[J]. 医学研究与教育, 2023, 40(2): 33-38. |
[10] | 李丹云,朱成振,杨斓,郭皓. 高血压中补体与T淋巴细胞的相互作用[J]. 医学研究与教育, 2022, 39(6): 9-14. |
[11] | 张红强, 张冰, 李建奇, 瞿海龙. 间充质干细胞实现心肌修复:机遇与挑战[J]. 医学研究与教育, 2022, 39(5): 25-30. |
[12] | 黄胜楠,赵瑞,肖暖. 远程医疗在老年高血压管理中的研究进展[J]. 医学研究与教育, 2022, 39(4): 39-44. |
[13] | 王静,韩力,张泽明. 慢性阻塞性肺疾病相关肺动脉高压的研究进展[J]. 医学研究与教育, 2022, 39(3): 21-28. |
[14] | 李明,苏维,马士恒,王涛. 不同水平程序性细胞死亡因子5对重症流行性感冒患者病情的影响[J]. 医学研究与教育, 2022, 39(2): 10-15. |
[15] | 王新新,李璐,武广义. 嘌呤受体对血压的调节及研究进展[J]. 医学研究与教育, 2022, 39(1): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||