Journal of Hebei Medical College for Continuing Education ›› 2022, Vol. 39 ›› Issue (2): 16-23.DOI: 10.3969/j.issn.1674-490X.2022.02.003
Previous Articles Next Articles
WEI Yali,SUN Chengcheng,WANG Xiaochun
Received:
2021-12-17
Online:
2022-04-25
Published:
2022-04-25
CLC Number:
WEI Yali,SUN Chengcheng,WANG Xiaochun. Advances on vasculogenic mimicry in breast cancer[J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(2): 16-23.
Add to citation manager EndNote|Ris|BibTeX
URL: //yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2022.02.003
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.DOI: 10.3322/caac.21660. [2] BIANCHINI G, BALKO J M, MAYER I A, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease[J]. Nat Rev Clin Oncol, 2016, 13(11): 674-690. DOI: 10.1038/nrclinonc.2016.66. [3] GEYER F C, PAREJA F, WEIGELT B, et al. The spectrum of triple-negative breast disease: high- and low-grade lesions[J]. Am J Pathol, 2017,187(10): 2139-2151. DOI: 10.1016/j.ajpath.2017.03.016. [4] FOLKMAN J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21): 1182-1186. DOI: 10.1056/NEJM197111182852108. [5] JIANG X J, WANG J, DENG X Y, et al. The role of microenvironment in tumor angiogenesis[J].J Exp Clin Cancer Res, 2020, 39(1): 204. DOI: 10.1186/s13046-020-01709-5. [6] WEI F, WANG D, WEI J Y, et al. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance[J].Cell Mol Life Sci, 2021, 78(1): 173-193. DOI: 10.1007/s00018-020-03581-0. [7] VIALLARD C, LARRIVÉE B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets[J]. Angiogenesis, 2017, 20(4): 409-426. DOI: 10.1007/s10456-017-9562-9. [8] YURA Y, CHONG B S H, JOHNSON R D, et al. Endothelial cell-specific redox gene modulation inhibits angiogenesis but promotes B16F0 tumor growth in mice[J]. FASEB J, 2019, 33(12): 14147-14158. DOI: 10.1096/fj.201900786R. [9] MANIOTIS A J, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI: 10.1016/S0002-9440(10)65173-5. [10] IZAWA Y, KASHII-MAGARIBUCHI K, YOSHIDA K, et al. Stem-like human breast cancer cells initiate vasculogenic mimicry on matrigel[J]. Acta Histochem Cytochem, 2018, 51(6): 173-183. DOI: 10.1267/ahc.18041. [11] SUN W, FAN Y Z, ZHANG W Z, et al. A pilot histomorphology and hemodynamic of vasculogenic mimicry in gallbladder carcinomas in vivo and in vitro[J]. J Exp Clin Cancer Res, 2011, 30(1): 46. DOI: 10.1186/1756-9966-30-46. [12] MILLIMAGGI D, MARI M, ASCENZO S D, et al. Vasculogenic mimicry of human ovarian cancer cells: role of CD147[J]. Int J Oncol, 2009, 35(6): 1423-1428. DOI: 10.3892/ijo_00000460. [13] YUE W Y, CHEN Z P. Does vasculogenic mimicry exist in astrocytoma? [J]. J Histochem Cytochem, 2005, 53(8): 997-1002. DOI: 10.1369/jhc.4A6521.2005. [14] CAI X S, JIA Y W, MEI J, et al. Tumor blood vessels formation in osteosarcoma: vasculogenesis mimicry[J]. Chin Med J(Engl), 2004, 117(1): 94-98. [15] VARTANIAN A A. Signaling pathways in tumor vasculogenic mimicry[J]. Biochemistry(Mosc), 2012, 77(9): 1044-1055. DOI: 10.1134/S000629791209012X. [16] LIU X, WANG J H, LI S, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase/ERK-MMP-laminin5γ2 signaling pathway[J]. Cancer Sci, 2015, 106(7): 857-866. DOI: 10.1111/cas.12684. [17] ANDONEGUI-ELGUERA M A, ALFARO-MORA Y, CÁCERES-GUTIÉRREZ R, et al. An overview of vasculogenic mimicry in breast cancer[J]. Front Oncol, 2020, 10: 220. DOI: 10.3389/fonc.2020.00220. [18] VANNINI I, FANINI F, FABBRI M. Emerging roles of microRNAs in cancer[J]. Curr Opin Genet Dev, 2018, 48: 128-133. DOI: 10.1016/j.gde.2018.01.001. [19] LI G X, HUANG M, CAI Y Q, et al. miR-141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression[J]. Mol Med Rep, 2018, 18(2): 1395-1404. DOI: 10.3892/mmr.2018.9108. [20] LIM D, CHO J G, YUN E, et al. MicroRNA 34a-AXL axis regulates vasculogenic mimicry formation in breast cancer cells[J]. Genes, 2020, 12(1): 9. DOI: 10.3390/genes12010009. [21] AN G L, LU F, HUANG S K, et al. Effects of miR 93 on epithelial to mesenchymal transition and vasculogenic mimicry in triple negative breast cancer cells[J]. Molecular Medicine Reports, 2021, 23(1): 30. DOI: 10.3892/mmr.2020.11668. [22] YI M, TAN Y X, WANG L, et al. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development[J]. Cell Mol Life Sci, 2020, 77(21): 4325-4346. DOI: 10.1007/s00018-020-03539-2. [23] RISAU W. Mechanisms of angiogenesis[J]. Nature, 1997, 386(6626): 671-674. DOI: 10.1038/386671a0. [24] PRAGER B C, XIE Q, BAO S D, et al. Cancer stem cells: the architects of the tumor ecosystem[J]. Cell Stem Cell, 2019, 24(1): 41-53. DOI: 10.1016/j.stem.2018.12.009. [25] SUN H Z, YAO N, CHENG S Q, et al. Cancer stem-like cells directly participate in vasculogenic mimicry channels in triple-negative breast cancer[J]. Cancer Biol Med, 2019, 16(2): 299-311. DOI: 10.20892/j.issn.2095-3941.2018.0209. [26] LIU T J, SUN B C, ZHAO X L, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene, 2013, 32(5): 544-553. DOI: 10.1038/onc.2012.85. [27] GONG W C, SUN B C, SUN H Z, et al. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells[J].Am J Cancer Res, 2017, 7(3): 503-517. [28] GONG W C, SUN B C, ZHAO X L, et al. Nodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway[J]. Oncotarget, 2016, 7(43): 70152-70167. DOI: 10.18632/oncotarget.12161. [29] HILL B S, SARNELLA A, D’AVINO G, et al. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer[J]. Semin Cancer Biol, 2020, 60: 202-213. DOI: 10.1016/j.semcancer.2019.07.028. [30] INOUE T, UMEZAWA A, TAKENAKA T, et al. The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models[J]. Kidney Int, 2015, 87(1): 233-238. DOI: 10.1038/ki.2014.235. [31] PONNUSAMY M P, SESHACHARYULU P, LAKSHMANAN I, et al. Emerging role of mucins in epithelial to mesenchymal transition[J]. Curr Cancer Drug Targets, 2013, 13(9): 945-956. DOI: 10.2174/15680096113136660100. [32] LIU T J, ZHAO X L, ZHENG X, et al. The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas[J]. Int J Oncol, 2020, 56(3): 750-760. DOI: 10.3892/ijo.2020.4972. [33] ZHANG Y, WEINBERG R A. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. DOI: 10.1007/s11684-018-0656-6. [34] CELIÉ-TERRASSA T, JOLLY M K. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis[J]. Cold Spring Harb Perspect Med, 2020, 10(7): a036905. DOI: 10.1101/cshperspect.a036905. [35] SHIBUE T, WEINBERG R A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications[J]. Nat Rev Clin Oncol, 2017, 14(10): 611-629. DOI: 10.1038/nrclinonc.2017.44. [36] O'CONOR C J, CHEN T, GONZÁLEZ I, et al. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker[J]. Biomark Med, 2018, 12(7): 813-820. DOI: 10.2217/bmm-2017-0398. [37] MITRA D, BHATTACHARYYA S, ALAM N, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast[J]. Breast Cancer Res Treat, 2020, 179(2): 359-370. DOI: 10.1007/s10549-019-05482-8. [38] BRANTLEY-SIEDERS D M, JIANG A X, SARMA K, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome[J]. PLoS One, 2011, 6(9): e24426. DOI: 10.1371/journal.pone.0024426. [39] LABELLE M, SCHNITTLER H J, AUST D E, et al. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling[J]. Cancer Res, 2008, 68(5): 1388-1397. DOI: 10.1158/0008-5472.CAN-07-2706. [40] NIE C Y, LV H F, BIE L Y, et al. Hypoxia-inducible factor 1-alpha expression correlates with response to neoadjuvant chemotherapy in women with breast cancer[J]. Medicine, 2018, 97(51): e13551. DOI: 10.1097/MD.0000000000013551. [41] REZAEI M, CAO J H, FRIEDRICH K, et al. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions[J]. Histochem Cell Biol, 2018, 149(1): 15-30. DOI: 10.1007/s00418-017-1619-8. [42] JU R J, LI X T, SHI J F, et al. Liposomes, modified with PTD(HIV-1)peptide, containing epirubicin and celecoxib, to target vasculogenic mimicry channels in invasive breast cancer[J]. Biomaterials, 2014, 35(26): 7610-7621. DOI: 10.1016/j.biomaterials.2014.05.040. [43] ZENG F, JU R J, LIU L, et al. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer[J]. Oncotarget, 2015, 6(34): 36625-36642. DOI: 10.18632/oncotarget.5382. [44] LI S X, ZHANG Q Y, ZHOU L C, et al. Inhibitory effects of compound DMBT on hypoxia-induced vasculogenic mimicry in human breast cancer[J]. Biomed Pharmacother, 2017, 96: 982-992. DOI: 10.1016/j.biopha.2017.11.137. [45] XU M R, WEI P F, SUO M Z, et al. Brucine suppresses vasculogenic mimicry in human triple-negative breast cancer cell line MDA-MB-231[J]. Biomed Res Int, 2019, 2019: 6543230. DOI: 10.1155/2019/6543230. [46] MAHFOUZ N, TAHTOUH R, ALAAEDDINE N, et al. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF1α and VEGF receptors[J]. PLoS One, 2017, 12(6): e0179202. DOI: 10.1371/journal.pone.0179202. [47] ZARRIN B, ZARIFI F, VASEGHI G, et al. Acquired tumor resistance to antiangiogenic therapy: mechanisms at a glance[J]. J Res Med Sci, 2017, 22: 117. DOI: 10.4103/jrms.JRMS_182_17. [48] XIE W, ZHAO H J, WANG F X, et al. A novel humanized Frizzled-7-targeting antibody enhances antitumor effects of Bevacizumab against triple-negative breast cancer via blocking Wnt/β-catenin signaling pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 30. DOI: 10.1186/s13046-020-01800-x. [49] HSIEH M J, LIN C W, SU S C, et al. Effects of miR-34b/miR-892a upregulation and inhibition of ABCB1/ABCB4 on melatonin-induced apoptosis in VCR-resistant oral cancer cells[J]. Mol Ther Nucleic Acids, 2020, 19: 877-889. DOI: 10.1016/j.omtn.2019.12.022. [50] CHENG J, YANG H L, GU C J, et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF1α/ROS/VEGF[J]. Int J Mol Med, 2019, 43(2): 945-955. DOI: 10.3892/ijmm.2018.4021. [51] MAROUFI N F, AMIRI M, DIZAJI B F, et al. Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition(EMT)in breast cancer stem cells[J]. Eur J Pharmacol, 2020, 881: 173282. DOI: 10.1016/j.ejphar.2020.173282. |
[1] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 39-43. |
[2] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(5): 7-14. |
[3] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(1): 64-69. |
[4] | . [J]. Journal of Hebei Medical College for Continuing Education, 2020, 37(3): 18-27. |
[5] | . [J]. Medical Reserch and Education, 2020, 37(1): 36-40. |
[6] | . [J]. Medical Reserch and Education, 2020, 37(1): 14-20. |
[7] | QI Juan, XU Yan, LI zhong, zHAO Binyu. Effects of continuous nursing on the functional recovery of patients with breast cancer [J]. Medical Reserch and Education, 2015, 32(5): 64-66. |
[8] | ZHANG Gang, QI Juan, LI Zhong, LIN Xiaomeng, CAI Qianqian, HAO Xin. Clinical significance of molecular markers expression in invasive ductal breast cancer and ductal carcinoma in situ [J]. Medical Reserch and Education, 2015, 32(3): 31-35. |
[9] | LIN Xiaomeng, SHI Jianwei, WANG Jian, LI Zhong. Ductal carcinoma in situ of the breast (Report of 78 cases) [J]. Medical Reserch and Education, 2015, 32(1): 26-30. |
[10] | ZHOU Bin,Li Yuanyuan. Sensitivity analysis on commonly used chemotherapy drugs in treating breast cancer cells [J]. Medical Reserch and Education, 2014, 31(2): 21-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||