[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492. [2] ARNOLD M, SIERRA M S, LAVERSANNE M, et al. Global patterns and trends in colorectal cancer incidence and mortality[J]. Gut, 2017, 66(4): 683-691. DOI: 10.1136/gutjnl-2015-310912. [3] JEON J, DU M M, SCHOEN R E, et al. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors[J]. Gastroenterology, 2018, 154(8): 2152-2164. DOI: 10.1053/j.gastro.2018.02.021. [4] QIU T Z, CHEN W S, LI P, et al. Subsequent anti-VEGF therapy after first-line anti-EGFR therapy improved overall survival of patients with metastatic colorectal cancer[J]. Onco Targets Ther, 2018, 11: 465-471. DOI: 10.2147/ott.s149110. [5] VIALE G,TRAPANT D,CURIGLIANO G. Mismatch repair deficiency as a predictive biomarker for immunotherapy efficacy[J]. Biomed Res Int, 2017, 2017: 1-7. DOI: 10.1155/2017/4719194. [6] BARETTI M, AZAD N S. The role of epigenetic therapies in colorectal cancer[J]. Curr Probl Cancer, 2018, 42(6): 530-547. DOI: 10.1016/j.currproblcancer.2018.03.001. [7] HENIKOFF S, GREALLY J M. Epigenetics, cellular memory and gene regulation[J]. Curr Biol, 2016, 26(14): R644-R648. DOI: 10.1016/j.cub.2016.06.011. [8] ALLIS C D, JENUWEIN T. The molecular hallmarks of epigenetic control[J]. Nat Rev Genet, 2016, 17(8): 487-500. DOI: 10.1038/nrg.2016.59. [9] SKVORTSOVA K, IOVINO N, BOGDANOVIC ' O. Functions and mechanisms of epigenetic inheritance in animals[J]. Nat Rev Mol Cell Biol, 2018, 19(12): 774-790. DOI: 10.1038/s41580-018-0074-2. [10] DIENSTMANN R, VERMEULEN L, GUINNEY J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer[J]. Nat Rev Cancer, 2017, 17(2): 79-92. DOI: 10.1038/nrc.2016.126. [11] OKUGAWA Y, GRADY W M, GOEL A. Epigenetic alterations in colorectal cancer: emerging biomarkers[J]. Gastroenterology, 2015, 149(5): 1204-1225. DOI: 10.1053/j.gastro.2015.07.011. [12] GAYON J. From mendel to epigenetics: history of genetics[J]. C R Biol, 2016, 339(7/8): 225-230. DOI: 10.1016/j.crvi.2016.05.009. [13] SUN B, HU L, LUO Z Y, et al. DNA methylation perspectives in the pathogenesis of autoimmune diseases[J]. Clin Immunol, 2016, 164: 21-27. DOI: 10.1016/j.clim.2016.01.011. [14] GAUDET F, HODGSON J G, EDEN A, et al. Induction of tumors in mice by genomic hypomethylation[J]. Science, 2003, 300(5618): 489-492. DOI: 10.1126/science.1083558. [15] DODGE J E, OKANO M, DICK F, et al. Inactivation of dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization[J]. J Biol Chem, 2005, 280(18): 17986-17991. DOI: 10.1074/jbc.M413246200. [16] TAHARA T, SHIBATA T, ARISAWA T, et al. CpG island promoter methylation(CIHM)status of tumor suppressor genes correlates with morphological appearances of gastric cancer[J]. Anticancer Res, 2010, 30(1): 239-244. [17] WERNER R J, KELLY A D, ISSA J P J. Epigenetics and precision oncology[J]. Cancer J, 2017, 23(5): 262-269. DOI: 10.1097/PPO.0000000000000281. [18] LIANG G N, WEISENBERGER D J. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers[J]. Epigenetics, 2017, 12(6): 416-432. DOI: 10.1080/15592294.2017.1311434. [19] MENG H, CAO Y, QIN J Z, et al. DNA methylation, its mediators and genome integrity[J]. Int J Biol Sci, 2015, 11(5): 604-617. DOI: 10.7150/ijbs.11218. [20] LAWRENCE M, DAUJAT S, SCHNEIDER R. Lateral thinking: how histone modifications regulate gene expression[J]. Trends Genet, 2016, 32(1): 42-56. DOI: 10.1016/j.tig.2015.10.007. [21] TALBERT P B, HENIKOFF S. Histone variants on the move: substrates for chromatin dynamics[J]. Nat Rev Mol Cell Biol, 2017, 18(2): 115-126. DOI: 10.1038/nrm.2016.148. [22] TALBERT P B, HENIKOFF S. Histone variants—ancient wrap artists of the epigenome[J]. Nat Rev Mol Cell Biol, 2010, 11(4): 264-275. DOI: 10.1038/nrm2861. [23] 李泰. G9A介导的Histone H3 lysine9甲基化作用在自噬调控中的分子基础[D]. 重庆:西南大学, 2014: 1-141. [24] 王维, 孟智启, 石放雄. 组蛋白修饰及其生物学效应[J]. 遗传, 2012, 34(7): 20-28. DOI: 10.3724/SP.J.1005.2012.00810. [25] SHI X F, SUN M, LIU H B, et al. Long non-coding RNAs: a new frontier in the study of human diseases[J]. Cancer Lett, 2013, 339(2): 159-166. DOI: 10.1016/j.canlet.2013.06.013. [26] ESTELLER M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12): 861-874. DOI: 10.1038/nrg3074. [27] ANASTASIADOU E, JACOB L S, SLACK F J. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18. DOI: 10.1038/nrc.2017.99. [28] LI C H, CHEN Y C. Targeting long non-coding RNAs in cancers: progress and prospects[J]. Int J Biochem Cell Biol, 2013, 45(8): 1895-1910. DOI: 10.1016/j.biocel.2013.05.030. [29] SCHMITT A M, CHANG H Y. Long noncoding RNAs in cancer pathways[J]. Cancer Cell, 2016, 29(4): 452-463. DOI: 10.1016/j.ccell.2016.03.010. [30] RUAN X B. Long non-coding RNA central of glucose homeostasis[J]. J Cell Biochem, 2016, 117(5): 1061-1065. DOI: 10.1002/jcb.25427. [31] LI H M, WANG L R, WU Y, et al. Very-low-dose decitabine is effective in treating intermediate-or high-risk myelodysplastic syndrome[J]. Acta Haematol, 2017, 138(3): 168-174. DOI: 10.1159/000479485. [32] GORE L, TRICHE T J, FARRAR J E, et al. A multicenter, randomized study of decitabine as epigenetic priming with induction chemotherapy in children with AML[J]. Clin Epigenetics, 2017, 9(1): 108. DOI: 10.1186/s13148-017-0411-x. [33] SEKERES M A, OTHUS M, LIST A F, et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117[J]. J Clin Oncol, 2017, 35(24): 2745-2753. DOI: 10.1200/JCO.2015.66.2510. [34] SANTINI V, ALLIONE B, ZINI G, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia[J]. Leukemia, 2018, 32(2): 413-418. DOI: 10.1038/leu.2017.186. [35] 吴璇. 地西他滨联合顺铂对结直肠癌化疗增敏的研究[D]. 北京:中国人民解放军医学院, 2015: 1-47. [36] 虞淦军. 地西他滨为基础的协同性免疫疗法治疗微卫星稳定性结直肠癌及机制研究[D]. 上海:中国人民解放军海军军医大学, 2018: 1-124. [37] LI P K, GENG X P, ZHU L X. DNA methylation inhibitors: research advances[J]. J Int Pharm Res, 2010, 37(3): 198-202. [38] 高曰文, 朱耀明, 王艳林, 等. 盐酸普鲁卡因对人结肠癌HT-29细胞Syk基因甲基化及表达的影响[J]. 生物技术通报, 2010(12): 173-177. DOI: 10.13560/j.cnki.biotech.bull.1985.2010.12.044. [39] 梁田田, 李日恒, 张爱民, 等. 普鲁卡因对结肠癌细胞中孕酮及脂联素受体3甲基化的影响[J]. 中国现代医学杂志, 2020, 30(4): 16-20. DOI: 10.3969/j.issn.1005-8982.2020.04.003. [40] 党晓东, 来炳祺, 何元. 普鲁卡因抑制脂多糖诱导的结肠癌细胞肿瘤侵袭性的作用机制[J]. 局解手术学杂志, 2018, 27(8): 541-544. DOI: 10.11659/jjssx.03E018023. [41] SINGH B N, SHANKAR S, SRIVASTAVA R K. Green tea catechin, epigallocatechin-3-gallate(EGCG): mechanisms, perspectives and clinical applications[J]. Biochem Pharmacol, 2011, 82(12): 1807-1821. DOI: 10.1016/j.bcp.2011.07.093. [42] THURN K T, THOMAS S, RAHA P, et al. Histone deacetylase regulation of ATM-mediated DNA damage signaling[J]. Mol Cancer Ther, 2013, 12(10): 2078-2087. DOI: 10.1158/1535-7163.mct-12-1242. [43] MARIADASON J M. HDACs and HDAC inhibitors in colon cancer[J]. Epigenetics, 2008, 3(1): 28-37. DOI: 10.4161/epi.3.1.5736. [44] 李青云, 肖鹏, 司徒伟基, 等. HDAC1对结直肠癌细胞凋亡及侵袭能力的影响[J]. 胃肠病学和肝病学杂志, 2018, 27(7): 781-785. DOI: 10.3969/j.issn.1006-5709.2018.07.015. [45] THANGARAJU M, CARSWELL K N, PRASAD P D, et al. Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3[J]. Biochem J, 2009, 417(1): 379-389. DOI: 10.1042/bj20081132. [46] ZHANG H, DAI X F, QI Y, et al. Histone deacetylases inhibitors in the treatment of retinal degenerative diseases: overview and perspectives[J]. J Ophthalmol, 2015, 2015: 250812. DOI: 10.1155/2015/250812. [47] SONNEMANN J, MARX C, BECKER S, et al. p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors[J]. Br J Cancer, 2014, 110(3): 656-667. DOI: 10.1038/bjc.2013.742. [48] TUMBER A, COLLINS L S, PETERSEN K D, et al. The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo[J]. Cancer Chemother Pharmacol, 2007, 60(2): 275-283. DOI: 10.1007/s00280-006-0374-7. [49] BULTMAN S J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer[J]. Mol Nutr Food Res, 2017, 61(1): 1500902. DOI: 10.1002/mnfr.201500902. [50] MANDL P, NAVARRO-COMPÁN V, TERSLEV L, et al. EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice[J]. Ann Rheum Dis, 2015, 74(7): 1327-1339. DOI: 10.1136/annrheumdis-2014-206971. [51] 寇玉玲. SETDB1在结直肠癌增殖和凋亡中的作用研究[D]. 泸州:西南医科大学, 2017: 1-67. [52] 陈克力. 甲基化转移酶SETDB1及cNOTCH1受体蛋白在结直肠癌中的功能及分子机制初步研究[D]. 广州:南方医科大学, 2017: 1-142. [53] YU G J, WU Y F, WANG W Y, et al. Correction to: low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment[J]. Cell Mol Immunol, 2020, 17(1): 111-112. DOI: 10.1038/s41423-019-0340-z. |