医学研究与教育 ›› 2025, Vol. 42 ›› Issue (1): 53-62.DOI: 10.3969/j.issn.1674-490X.2025.01.006

• 预防医学与卫生学 • 上一篇    

肿瘤患者肌肉减少症预测模型的构建

张延隆1,王运良2,张娟娟1,张一曼3,赵紫琪1,张红杰1   

  1. 1.河北大学公共卫生学院, 河北 保定 071000;
    2.保定市第一中心医院肿瘤内科, 河北 保定 071000;
    3.保定市第一中心医院营养科, 河北 保定 071000
  • 收稿日期:2024-11-18 发布日期:2025-02-28
  • 通讯作者: 张红杰(1966—),女,河北保定人,教授,硕士,硕士生导师,主要从事社区健康教育、传染病和慢性病预防和控制工作。E-mail: 1003759461@qq.com
  • 作者简介:张延隆(1999—),男,河北邢台人,在读硕士,主要从事流行病与卫生统计学研究。 E-mail: 2896927410@qq.com
  • 基金资助:
    河北省自然科学基金资助项目(H2024201039)

  • Received:2024-11-18 Published:2025-02-28

摘要: 目的 探讨肿瘤患者肌肉减少症的影响因素,构建风险预测模型并验证,为早期识别肿瘤患者中肌肉减少症高危人群提供筛查工具。方法 收集保定市某三甲医院肿瘤内科的肿瘤患者,按照7∶3的比例随机分为建模组和验证组。对建模组,采用单因素分析和多因素Logistic回归分析,筛选出肌肉减少症的独立预测因子,构建预测模型。根据受试者特征曲线下面积评估模型的预测效能。结果 年龄、小腿围、吸烟史、合并糖尿病、肿瘤分期及PG-SGA评分是肿瘤患者发生肌肉减少症的独立影响因素。可建立预测模型方程logit(P)= 6.686 + 0.244x1-0.806x2+1.036x3+1.186x4+1.828x5+2.635x6(x1为年龄,x2为小腿围,x3为吸烟史,x4为合并糖尿病,x5为肿瘤分期,x6为PG-SGA评分),P>27.53%可被认为是肌肉减少症高危人群。结论 构建的预测模型具有拟合度高、区分能力良好及简便无创等优点,可以有效预测肿瘤患者肌肉减少症的发生。

关键词: 肿瘤, 肌肉减少症, 影响因素, 预测模型

Abstract: Objective To investigate the influential factors of sarcopenia in cancer patients, establish a risk prediction model and verify it, and provide a screening tool for early identification of high-risk groups of sarcopenia in cancer patients. Methods Cancer patients in the department of oncology of a three A grade hospital in Baoding city were randomly divided into modeling group and validation group according to a ratio of 7∶3. For the modeling group, univariate analysis and multivariate Logistic regression analysis were used to screen out independent predictors of sarcopenia, and the prediction model was constructed. The predictive performance of the model was evaluated according to the area under the ROC curve(AUC). Results Age, calf circumference, smoking history, diabetes mellitus, tumor stage and PG-SGA score were the independent factors influencing the occurrence of sarcopenia in tumor patients. The prediction model equation logit(P)= 6.686 + 0.244x1-0.806x2+1.036x3+1.186x4+1.828x5+2.635x6(x1: age,x2: calf circumference, x3: smoking history, x4: combined diabetes, x5: tumor stage, x6: PG-SGA score), P>27.53% could be considered as high risk group of sarcopenia. Conclusion The constructed prediction model has the advantages of high fitting degree, good differentiation ability, simple and non-invasive, which can effectively predict the occurrence of sarcopenia in tumor patients.

Key words: tumor, sarcopenia, influencing factors, prediction model

中图分类号: