[1] WAKISAKA M, KAMOUCHI M, KITAZONO T. Lessons from the trials for the desirable effects of sodium glucose co-transporter 2 inhibitors on diabetic cardiovascular events and renal dysfunction[J]. Int J Mol Sci, 2019, 20(22): 5668. DOI: 10.3390/ijms20225668. [2] GNUDI L, COWARD R J M, LONG D A. Diabetic nephropathy: perspective on novel molecular mechanisms[J]. Trends Endocrinol Metab, 2016, 27(11): 820-830. DOI: 10.1016/j.tem.2016.07.002. [3] PIERRE-JEAN S, MANJULA D, WHEELOCK K M, et al. Urine metabolites are associated with glomerular lesions in type 2 diabetes[J]. Metabolomics, 2018, 14(6): 84. DOI: 10.1007/s11306-018-1380-6. [4] BELLIN A R, ZHANG Y, THAI K, et al. Impaired SIRT1 activity leads to diminution in glomerular endowment without accelerating age-associated GFR decline[J]. Physiol Rep, 2019, 7(9): e14044. DOI: 10.14814/phy2.14044. [5] SAGOO M K, GNUDI L. Diabetic nephropathy: is there a role for oxidative stress?[J]. Free Radic Biol Med, 2018, 116: 50-63. DOI: 10.1016/j.freeradbiomed.2017.12.040. [6] TUTTLE K R. Back to the future: glomerular hyperfiltration and the diabetic kidney[J]. Diabetes, 2017, 66(1): 14-16. DOI: 10.2337/dbi16-0056. [7] SANDHOLM N, VAN ZUYDAM N, AHLQVIST E, et al. The genetic landscape of renal complications in type 1 diabetes[J]. J Am Soc Nephrol, 2017, 28(2): 557-574. DOI: 10.1681/asn.2016020231. [8] MILAS O, GADALEAN F, VLAD A, et al. Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients[J]. J Diabetes Complications, 2019: 107479. DOI: 10.1016/j.jdiacomp.2019.107479. [9] SU H, WAN C, SONG A, et al. Oxidative stress and renal fibrosis: mechanisms and therapies[J]. Adv Exp Med Biol, 2019, 1165: 585-604. DOI: 10.1007/978-981-13-8871-2_29. [10] TURKMEN K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse[J]. Int Urol Nephrol, 2017, 49(5): 837-844. DOI: 10.1007/s11255-016-1488-4. [11] ZHANG C X, LI Q, LAI S S, et al. Attenuation of diabetic nephropathy by Sanziguben Granule inhibiting EMT through Nrf2-mediated anti-oxidative effects in streptozotocin(STZ)-induced diabetic rats[J]. J Ethnopharmacol, 2017, 205: 207-216. DOI: 10.1016/j.jep.2017.05.009. [12] NOGUERA C B, BAO S, PETERSEN K J, et al. Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods[J]. J Med Imaging, 2019, 6(4): 044007. DOI: 10.1117/1.JMI.6.4.044007. [13] QIAO Y C, CHEN Y L, PAN Y H, et al. Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy[J]. Medicine, 2017, 96(15): e6583. DOI: 10.1097/md.0000000000006583. [14] HOU B Y, QIANG G F, ZHAO Y R, et al. Salvianolic acid A protects against diabetic nephropathy through ameliorating glomerular endothelial dysfunction via inhibiting AGE-RAGE signaling[J]. Cell Physiol Biochem, 2017, 44(6): 2378-2394. DOI: 10.1159/000486154. [15] LIU Q Y, DUAN Q, FU X H, et al. Value of elastography point quantification in improving the diagnostic accuracy of early diabetic kidney disease[J]. World J Clin Cases, 2019, 7(23): 3945-3956. DOI: 10.12998/wjcc.v7.i23.3945. [16] WANG Z J, HAN Z J, TAO J, et al. Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis[J]. J Cell Mol Med, 2017, 21(10): 2359-2369. DOI: 10.1111/jcmm.13157. [17] CHEN Z Y, YUAN Y Y, ZOU X R, et al. Radix puerariae and fructus crataegi mixture inhibits renal injury in type 2 diabetes via decreasing of AKT/PI3K[J]. BMC Complement Altern Med, 2017, 17: 454. DOI: 10.1186/s12906-017-1945-3. [18] DEWANJEE S, BHATTACHARJEE N. MicroRNA: a new generation therapeutic target in diabetic nephropathy[J]. Biochem Pharmacol, 2018, 155: 32-47. DOI: 10.1016/j.bcp.2018.06.017. [19] RAMOS A M, FERNANDEZFERNANDEZ B, PEREZGOMEZ M V, et al. Design and optimization strategies for the development of new drugs that treat chronic kidney disease[J]. Expert Opin Drug Discov, 2019, 15(1): 101-115. DOI: 10.1080/17460441.2020.1690450. [20] MOSENZON O, LEIBOWITZ G, BHATT D L, et al. Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial[J]. Dia Care, 2017, 40(1): 69-76. DOI: 10.2337/dc16-0621. [21] MIZUIRI S. ACE and ACE2 in kidney disease[J]. World J Nephrol, 2015, 4(1): 74. DOI: 10.5527/wjn.v4.i1.74. [22] LIU C X, HU Q, WANG Y, et al. Angiotensin-converting enzyme(ACE)2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: A comparison with ACE inhibition[J]. Mol Med, 2011, 17(1/2): 59-69. DOI: 10.2119/molmed.2010.00111. [23] WANG L F, LIN W Q, CHEN J H. Krüppel-like factor 15: a potential therapeutic target for kidney disease[J]. Int J Biol Sci, 2019, 15(9): 1955-1961. DOI: 10.7150/ijbs.34838. [24] JAMES M T, MANNS B J. Neprilysin inhibition and effects on kidney function and surrogates of cardiovascular risk in chronic kidney disease[J]. Circulation, 2018, 138(15): 1515-1518. DOI:10.1161/CIRCULATIONAHA.118.036523. [25] BENIGNI A, ZOJA C, ZATELLI C, et al. Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy[J]. Kidney Int, 2004, 66(5): 1959-1965. DOI: 10.1111/j.1523-1755.2004.00982.x. [26] GUZZI F, CIRILLO L, ROPERTO R M, et al. Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: An Updated View[J]. Int J Mol Sci, 2019, 20(19): 4941. DOI: 10.3390/ijms20194941. [27] PANCHAPAKESAN U, PEGG K, GROSS S, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells: renoprotection in diabetic nephropathy?[J]. Plos One, 2013, 8(2): e54442. DOI: 10.1371/journal.pone.0054442. [28] KOJIMA N, WILLIAMS J M, TAKAHASHI T, et al. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DM rats[J]. J Pharmacol Exp Ther, 2013, 345(3): 464-472. DOI: 10.1124/jpet.113.203869. [29] SUN A L, DENG J T, GUAN G J, et al. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease[J]. Diabetes Vasc Dis Res, 2012, 9(4): 301-308. DOI: 10.1177/1479164111434318. [30] ISAKA Y. Targeting TGF-β signaling in kidney fibrosis[J]. Int J Mol Sci, 2018, 19(9): 2532. DOI: 10.3390/ijms19092532. [31] KIM Y, KIM S, KIM K, et al. The role of inflammasome-dependent and inflammasome-independent NLRP3 in the kidney[J]. Cells, 2019, 8(11):1389. DOI: 10.3390/cells8111389. [32] MANNUCCI E, PALA L, CIANI S, et al. Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus[J]. Diabetologia, 2005, 48(6): 1168-1172. DOI: 10.1007/s00125-005-1749-8. [33] ELSEWEIDY M M, ELSWEFY S E, YOUNIS N N, et al. Pyridoxamine, an inhibitor of protein glycation, in relation to microalbuminuria and proinflammatory cytokines in experimental diabetic nephropathy[J]. Exp Biol Med, 2013, 238(8): 881-888. DOI: 10.1177/1535370213494644. [34] TANG Y T, ZHANG F F, HUANG L, et al. The protective mechanism of fluorofenidone in renal interstitial inflammation and fibrosis[J]. Am J Med Sci, 2015, 350(3): 195-203. DOI: 10.1097/maj.0000000000000501. [35] HANSSEN N M, RUSSELL N, COOPER M E. Recent advances in glucose-lowering treatment to reduce diabetic kidney disease[J]. Expert Opin Pharmacother, 2015, 16(9): 1325-1333. DOI: 10.1517/14656566.2015.1041502. [36] LIU Y N, ZHOU J W, LI T T, et al. Sulodexide protects renal tubular epithelial cells from oxidative stress-induced injury via upregulating klotho expression at an early stage of diabetic kidney disease[J]. J Diabetes Res, 2017, 2017: 1-10. DOI: 10.1155/2017/4989847. |