Journal of Hebei Medical College for Continuing Education ›› 2023, Vol. 40 ›› Issue (3): 28-37.DOI: 10.3969/j.issn.1674-490X.2023.03.005
Previous Articles Next Articles
Received:
2022-09-16
Online:
2023-06-25
Published:
2023-06-25
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: //yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2023.03.005
[1] BERNARD G R, ARTIGAS A, BRIGHAM K L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination[J]. Am J Respir Crit Care Med, 1994, 149(3): 818-824. DOI: 10.1164/ajrccm.149.3.7509706. [2] RANIERI V M, RUBENFELD G D, THDMPSON B T et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533. DOI: 10.1001/jama.2012.5669. [3] LI W L, LI D, CHEN Y S, et al. Classic signaling pathways in alveolar injury and repair involved in Sepsis-induced ALI/ARDS: new research progress and prospect[J]. Dis Markers, 2022, 2022: 6362344. DOI: 10.1155/2022/6362344. [4] MOKRA D, MIKOLKA P, KOSUTOVA P, et al. Corticosteroids in acute lung injury: the dilemma continues[J]. Int J Mol Sci, 2019, 20(19): E4765. DOI: 10.3390/ijms20194765. [5] LONG M E, MALLAMPALLI R K, HOROWITZ J C. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci(Lond), 2022, 136(10): 747-769. DOI: 10.1042/CS20210879. [6] CAO C, ZHANG L, SHEN J. Phosgene-Induced acute lung injury: approaches for mechanism-based treatment strategies[J]. Front Immunol, 2022, 13: 917395. DOI: 10.3389/fimmu.2022.917395. [7] MEYER N J, GATTINONI L, CALFEE C S. Acute respiratory distress syndrome[J]. Lancet, 2021, 398(10300): 622-637. DOI: 10.1016/s0140-6736(21)00439-6. [8] GROUP T R C. Dexamethasone in hospitalized patients with covid-19[J]. N Engl J Med, 2021, 384(8): 693-704. DOI: 10.1056/nejmoa2021436. [9] REN R, OAKLEY R H, CRUZ-TOPETE D, et al. Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis[J]. Endocrinology, 2012, 153(11): 5346-5360. DOI: 10.1210/en.2012-1563. [10] DINARELLO A, LICCIARDELLO G, FONTANA C M, et al. Glucocorticoid receptor activities in the zebrafish model: a review[J]. J Endocrinol, 2020, 247(3): R63-R82. DOI: 10.1530/JOE-20-0173. [11] HACHEMI Y, RAPP A E, LEE S, et al. Intact glucocorticoid receptor dimerization is deleterious in trauma-induced impaired fracture healing[J]. Front Immunol, 2021, 11: 628287. DOI: 10.3389/fimmu.2020.628287. [12] REICHARDT S D, AMOURET A, MUZZI C, et al. The role of glucocorticoids in inflammatory diseases[J]. Cells, 2021, 10(11): 2921. DOI: 10.3390/cells10112921. [13] WEIKUM E R, KNUESEL M T, ORTLUND E A, et al. Glucocorticoid receptor control of transcription: precision and plasticity via allostery[J]. Nat Rev Mol Cell Biol, 2017, 18(3): 159-174. DOI: 10.1038/nrm.2016.152. [14] DONG L, ZHU Y H, LIU D X, et al. Intranasal application of budesonide attenuates lipopolysaccharide-induced acute lung injury by suppressing nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 inflammasome activation in mice[J]. J Immunol Res, 2019, 2019: 7264383. DOI: 10.1155/2019/7264383. [15] SALEM H F, MOUBAEAK G A, ALI A A, et al. Budesonide-loaded bilosomes as a targeted delivery therapeutic approach against acute lung injury in rats[J]. J Pharm Sci, 2023, 112(3): 760-770. DOI: 10.1016/j.xphs.2022.10.001. [16] YANG J W, MAO B, TAO R J, et al. Corticosteroids alleviate lipopolysaccharide-induced inflammation and lung injury via inhibiting NLRP3-inflammasome activation[J]. J Cell Mol Med, 2020, 24(21): 12716-12725. DOI: 10.1111/jcmm.15849. [17] TU G W, SHI Y, ZHENG Y J, et al. Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage[J]. J Transl Med, 2017, 15(1): 181. DOI: 10.1186/s12967-017-1284-7. [18] YANG H H, DUAN J X, LIU S K, et al. A COX-2/sEH dual inhibitor PTUPB alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting NLRP3 inflammasome activation[J]. Theranostics, 2020, 10(11): 4749-4761. DOI: 10.7150/thno.43108. [19] HU Y, LOU J, MAO Y Y, et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury[J]. Autophagy, 2016, 12(12): 2286-2299. DOI: 10.1080/15548627.2016.1230584. [20] BOS L D, MARTIN-LOECHES I, SCHULTZ M J. ARDS: challenges in patient care and frontiers in research[J]. Eur Respir Rev, 2018, 27(147): 170107. DOI: 10.1183/16000617.0107-2017. [21] HAN N R, KO S G, PARK H J, et al. Dexamethasone attenuates Oncostatin M production via suppressing of PI3K/Akt/NF-κB signaling in neutrophil-like differentiated HL-60 cells[J]. Molecules, 2021, 27(1): 129. DOI: 10.3390/molecules27010129. [22] MANDELL L A, NIEDERMAN M S. Aspiration pneumonia[J]. N Engl J Med, 2019, 380(7): 651-663. DOI: 10.1056/nejmra1714562. [23] HUNT E B, SULLIVAN A, GALVIN J, et al. Gastric aspiration and its role in airway inflammation[J]. Open Respir Med J, 2018, 12: 1-10. DOI: 10.2174/1874306401812010001. [24] SONG L C, CHEN X X, MENG J G, et al. Effects of different corticosteroid doses and durations on smoke inhalation-induced acute lung injury and pulmonary fibrosis in the rat[J]. Int Immunopharmacol, 2019, 71: 392-403. DOI: 10.1016/j.intimp.2019.03.051. [25] 宋立成,韩志海,孟激光,等.糖皮质激素对大鼠烟雾吸入性急性肺损伤凝血功能的影响[J].中华急诊医学杂志, 2019, 28(3): 335-343. [26] 纵加强,韩志海.烟雾吸入性急性肺损伤药物治疗的研究进展[J].国际呼吸杂志, 2021, 41(6): 459-463. DOI: 10.3760/cma.j.cn131368-20200423-00326. [27] BUTT Y M, SMITH M L, TAZELAAR H D, et al. Pathology of vaping-associated lung injury[J]. N Engl J Med, 2019, 381(18): 1780-1781. DOI: 10.1056/nejmc1913069. [28] NORRIS M R. Vaping-associated pulmonary injury[J]. Ann Intern Med, 2020, 172(12): 841. DOI: 10.7326/L20-0279. [29] 王艳,仝亚琪,周为,等.电子烟相关肺损伤一例并文献复习[J].中华结核和呼吸杂志, 2021, 44(5): 481-487. DOI: 10.3760/cma.j.cn112147-20200818-00906. [30] MARCZYLO T. How bad are e-cigarettes? What can we learn from animal exposure models?[J]. J Physiol, 2020, 598(22): 5073-5089. DOI: 10.1113/JP278366. [31] XU Y H, TAI W L, QU X Y, et al. Rapamycin protects against paraquat-induced pulmonary fibrosis: activation of Nrf2 signaling pathway[J]. Biochem Biophys Res Commun, 2017, 490(2): 535-540. DOI: 10.1016/j.bbrc.2017.06.074. [32] 高冉冉,玛依拉·阿扎提,杨建中,等.不同剂量糖皮质激素干预百草枯中毒所致大鼠早期急性肺损伤的实验研究[J].新疆医学, 2018, 48(9): 921-925. [33] LI L R, CHAUDHARY B, YOU C, et al. Glucocorticoid with cyclophosphamide for oral paraquat poisoning[J]. Cochrane Database Syst Rev, 2021, 6(6): CD008084. DOI: 10.1002/14651858.CD008084.pub5. [34] LU Q Y, HUANG S Y, MENG X Y, et al. Mechanism of phosgene-induced acute lung injury and treatment strategy[J]. Int J Mol Sci, 2021, 22(20): 10933. DOI: 10.3390/ijms222010933. [35] LI W L, PAULUHN J. Phosgene-induced lung edema: comparison of clinical criteria for increased extravascular lung water content with postmortem lung gravimetry and lavage-protein in rats and dogs[J]. Toxicol Lett, 2019, 305: 32-39. DOI: 10.1016/j.toxlet.2019.01.006. [36] RADBEL J, LASKIN D L, LASKIN J D, et al. Disease-modifying treatment of chemical threat agent-induced acute lung injury[J]. Ann N Y Acad Sci, 2020, 1480(1): 14-29. DOI: 10.1111/nyas.14438. [37] GAVER D P, NIEMAN G F, GATTO L A, et al. The POOR get POORer: a hypothesis for the pathogenesis of ventilator-induced lung injury[J]. Am J Respir Crit Care Med, 2020, 202(8): 1081-1087. DOI: 10.1164/rccm.202002-0453CP. [38] JOELSSON J P, INGTHORSSON S, KRICKER J, et al. Ventilator-induced lung-injury in mouse models: is there a trap?[J]. Lab Anim Res, 2021, 37(1): 30. DOI: 10.1186/s42826-021-00108-x. [39] O'GARA B, TALMOR D. Perioperative lung protective ventilation[J]. BMJ, 2018, 362: k3030. DOI: 10.1136/bmj.k3030. [40] HURSKAINEN M, MIZ ˇÍKOVÁ I, COOK D P, et al. Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage[J]. Nat Commun, 2021, 12(1): 1565. DOI: 10.1038/s41467-021-21865-2. [41] PAO H P, LIAO W I, TANG S H, et al. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating claudin-4 expression[J]. Front Immunol, 2021, 12: 674316. DOI: 10.3389/fimmu.2021.674316. [42] 刘露,冯伟,郭轶男.糖皮质激素对高氧诱导的新生小鼠肺功能损伤、炎症反应和JAK2/STAT5通路的影响[J].实验动物科学, 2020, 37(1): 42-49. DOI: 10.3969/j.issn.1006-6179.2020.01.009. [43] RENDEKI S, MOLNÁR T F. Pulmonary contusion[J]. J Thorac Dis, 2019, 11(S2): S141-S151. DOI: 10.21037/jtd.2018.11.53. [44] 汪雷,付静怡,吴伟铭,等.大鼠闭合性胸外伤所致肺挫伤模型构建[J].中华胸部外科电子杂志, 2021, 8(4): 218-222. DOI: 10.3877/cma.j.issn.2095-8773.2021.04.03. [45] DANG M K, BENNETT S, POWELL E K, et al. Extracorporeal membrane oxygenation in a 39-year-old man with traumatic pulmonary contusions and acute respiratory distress syndrome[J]. Air Med J, 2018, 37(4): 221-224. DOI: 10.1016/j.amj.2018.04.003. [46] 付静怡,汪雷,杨异.急性肺损伤动物模型建立的研究进展[J].上海交通大学学报(医学版), 2021, 41(5): 690-694. DOI: 10.3969/j.issn.1674-8115.2021.05.022. [47] 何振鹏,祁婷,徐双依,等.脂多糖气管滴注和盲肠结扎穿孔法分别诱导急性肺损伤小鼠模型的比较研究[J].扬州大学学报(农业与生命科学版), 2021, 42(5): 39-44. DOI: 10.16872/j.cnki.1671-4652.2021.05.007. [48] WANG X Q, ZHOU X, ZHOU Y, et al. Low-dose dexamethasone alleviates lipopolysaccharide-induced acute lung injury in rats and upregulates pulmonary glucocorticoid receptors[J]. Respirology, 2008, 13(6): 772-780. DOI: 10.1111/j.1440-1843.2008.01344.x. [49] 张宇,卢笑晖,连新宝.脓毒症急性肺损伤的发生机制及治疗研究进展[J].解放军医学杂志, 2021, 46(11): 1159-1164. DOI: 10.11855/j.issn.0577-7402.2021.11.16. [50] DU H L, ZHAI A D, YU H. Synergistic effect of halofuginone and dexamethasone on LPS-induced acute lung injury in type II alveolar epithelial cells and a rat model[J]. Mol Med Rep, 2020, 21(2): 927-935. DOI: 10.3892/mmr.2019.10865. [51] ZHANG G H, ZHANG X, HUANG H D, et al. Saquinavir plus methylprednisolone ameliorates experimental acute lung injury[J]. Braz J Med Biol Res, 2018, 51(10): e7579. DOI: 10.1590/1414-431X20187579. [52] 王映珍,蒙雁飞,马莉,等.胰腺炎相关ARDS的诊治进展[J].中华危重病急救医学, 2021, 33(9): 1149-1152. DOI: 10.3760/cma.j.cn121430-20210201-00188. [53] ZHOU J L, ZHOU P C, ZHANG Y Y, et al. Signal pathways and markers involved in acute lung injury induced by acute pancreatitis[J]. Dis Markers, 2021, 2021: 9947047. DOI: 10.1155/2021/9947047. [54] KONG L M, DENG J, ZHOU X, et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury[J]. Cell Death Dis, 2021, 12(10): 928. DOI: 10.1038/s41419-021-04227-0. [55] 张春,吕桂芳,郭登方,等.糖皮质激素对重症急性胰腺炎大鼠急性肺损伤的保护作用机制研究[J].中国临床药理学杂志, 2020, 36(24): 4006-4009. DOI: 10.13699/j.cnki.1001-6821.2020.24.011. [56] GE P, LOU Y L, OKOYE C S, et al. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: a troublesome trio for acute pancreatitis[J]. Biomed Pharmacother, 2020, 132: 110770. DOI: 10.1016/j.biopha.2020.110770. [57] 张霖,李东航,郭小波,等.减轻肺缺血再灌注损伤中氧化应激的药物研究进展[J].武汉大学学报(医学版), 2020, 41(2): 337-340. DOI: 10.14188/j.1671-8852.2019.0462. [58] VLASTOS D, ZEINAH M, NINKOVIC-HALL G, et al. The effects of ischaemic conditioning on lung ischaemia-reperfusion injury[J]. Respir Res, 2022, 23(1): 351. DOI: 10.1186/s12931-022-02288-z. [59] ZHENG L L, HAN R L, TAO L, et al. Effects of remote ischemic preconditioning on prognosis in patients with lung injury: a meta-analysis[J]. J Clin Anesth, 2020, 63: 109795. DOI: 10.1016/j.jclinane.2020.109795. [60] 邹海波,孙晓峰.依托咪酯后处理肢体缺血再灌注肺损伤模型大鼠Fas/Fasl通路的变化[J].中国组织工程研究, 2020, 24(32): 5162-5167. DOI: 10.3969/j.issn.2095-4344.2865. [61] 吕帅国,卢锡华,李廷坤,等.七氟醚预处理对大鼠肺缺血再灌注时HMGB1/TLR4/NF-κB信号通路的影响[J]. 中华麻醉学杂志, 2019, 39(4): 436-439. DOI: 10.3760/cma.j.issn.0254-1416.2019.04.014. [62] PAI S, NJOKU D B. The role of hypoxia-induced mitogenic factor in organ-specific inflammation in the lung and liver: key concepts and gaps in knowledge regarding molecular mechanisms of acute or immune-mediated liver injury[J]. Int J Mol Sci, 2021, 22(5): 2717. DOI: 10.3390/ijms22052717. [63] 王志强,常克,曾靖雯,等.紫草素调节新生小鼠缺氧诱导的肺损伤和肺泡巨噬细胞中M1/M2型极化及炎性因子水平[J].免疫学杂志, 2021, 37(5): 404-409. DOI: 10.13431/j.cnki.immunol.j.20210056. [64] EFFERTH T, OESCH F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases[J]. Med Res Rev, 2021, 41(6): 3023-3061. DOI: 10.1002/med.21842. [65] MCVEY M J, KAPUR R, CSERTI-GAZDEWICH C, et al. Transfusion-related acute lung injury in the perioperative patient[J]. Anesthesiology, 2019, 131(3): 693-715. DOI: 10.1097/ALN.0000000000002687. [66] SEMPLE J W, MCVEY M J, KIM M, et al. Targeting transfusion-related acute lung injury: the journey from basic science to novel therapies[J]. Crit Care Med, 2018, 46(5): e452-e458. DOI: 10.1097/CCM.0000000000002989. [67] 胡嫒,陈唯韫,黄宇光.输血相关急性肺损伤发病机制及防治措施研究进展[J].中国医学科学院学报, 2020, 42(5): 674-680. DOI: 10.3881/j.issn.1000-503X.11413. [68] SEMPLE J W, REBETZ J, KAPUR R. Transfusion-associated circulatory overload and transfusion-related acute lung injury[J]. Blood, 2019, 133(17): 1840-1853. DOI: 10.1182/blood-2018-10-860809. [69] 易昱昊,陈峰,赵贵锋.热射病相关肺损伤机制及治疗研究进展[J].中华灾害救援医学, 2022, 10(2): 102-106. DOI: 10.13919/j.issn.2095-6274.2022.02.010. [70] LIU Z Y, CHEN J T, HU L, et al. Expression profiles of genes associated with inflammatory responses and oxidative stress in lung after heat stroke[J]. Biosci Rep, 2020, 40(6): BSR20192048. DOI: 10.1042/BSR20192048. [71] WALTER E, GIBSON O R. The efficacy of steroids in reducing morbidity and mortality from extreme hyperthermia and heatstroke-a systematic review[J]. Pharmacol Res Perspect, 2020, 8(4): e00626. DOI: 10.1002/prp2.626. |
[1] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 18-24. |
[2] | ZHANG Jinghui,ZHAO Hanqing,WANG Zewen,XIANG Hongwei,GE Shaoqin. Simple obesity and application of TCM Piwei theory [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(3): 54-59. |
[3] | WANG Jing, HAN Li, ZHANG Zeming. Advances on chronic obstructive pulmonary disease associated pulmonary hypertension [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(3): 21-28. |
[4] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(6): 36-43. |
[5] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(2): 21-25. |
[6] | . [J]. Medical Reserch and Education, 2019, 36(2): 28-32. |
[7] | . [J]. Medical Reserch and Education, 2018, 35(6): 5-9. |
[8] | ZHENG Pei, GAO Wei, CHEN Ying. The pathogenesis, prevention and nursing of critically ill patients complicated with stress ulcer [J]. Medical Reserch and Education, 2015, 32(1): 80-84. |
[9] | ZHANG Ke,LIU Junfeng,XIANG Shasha,KANG Meng,DAI Yue. Mechanism of gastroesophageal relfux disease pathogenesis and its symptom perception [J]. Medical Reserch and Education, 2014, 31(4): 71-74. |
[10] | ZHANG Qingyun,DONG Xiaodong,HAO Yuan,CHEN Yumin. Study on the pathogenesis of Parkinson’s disease [J]. Medical Reserch and Education, 2013, 30(3): 85-88,99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||