Journal of Hebei Medical College for Continuing Education ›› 2022, Vol. 39 ›› Issue (5): 1-6.DOI: 10.3969/j.issn.1674-490X.2022.05.001
JIA Juan1, LIANG Si1, CHEN Hengli1, WANG Hongjie1,2,3
Received:
2022-08-22
Online:
2022-10-25
Published:
2022-10-25
CLC Number:
JIA Juan, LIANG Si, CHEN Hengli, WANG Hongjie. The role of microRNA in high phosphorus induced vascular calcification[J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 1-6.
Add to citation manager EndNote|Ris|BibTeX
URL: //yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2022.05.001
[1] VIDAL-PETIOT E, GREENLAW N, KALRA P R, et al. Chronic kidney disease has a graded association with death and cardiovascular outcomes in stable coronary artery disease: an analysis of 21, 911 patients from the CLARIFY registry[J]. J Clin Med, 2019, 9(1): 4. DOI: 10.3390/jcm9010004. [2] CANO-MEGÍAS M, GUISADO-VASCO P, BOUARICH H, et al. Coronary calcification as a predictor of cardiovascular mortality in advanced chronic kidney disease: a prospective long-term follow-up study[J]. BMC Nephrol, 2019, 20(1): 188. DOI: 10.1186/s12882-019-1367-1. [3] HE J, REILLY M, YANG W, et al. Risk factors for coronary artery calcium among patients with chronic kidney disease(from the Chronic Renal Insufficiency Cohort Study)[J]. Am J Cardiol, 2012, 110(12): 1735-1741. DOI: 10.1016/j.amjcard.2012.07.044. [4] GRAVESEN E, LERCHE MACE M, NORDHOLM A, et al. Exogenous BMP7 in aortae of rats with chronic uremia ameliorates expression of profibrotic genes, but does not reverse established vascular calcification[J]. PLoS One, 2018, 13(1): e0190820. DOI: 10.1371/journal.pone.0190820. [5] WU W, SHANG Y Q, DAI S L, et al. miR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF[J]. Bratisl Lek Listy, 2017, 118(8): 499-503. DOI: 10.4149/BLL_2017_096. [6] LEE C T, LEE Y T, TAIN Y L, et al. Circulating microRNAs and vascular calcification in hemodialysis patients[J]. J Int Med Res, 2019, 47(7): 2929-2939. DOI: 10.1177/0300060519848949. [7] PANIZO S, NAVES-DÍAZ M, CARRILLO-LÓPEZ N, et al. microRNAs 29b, 133b, and 211 regulate vascular smooth muscle calcification mediated by high phosphorus[J]. J Am Soc Nephrol, 2016, 27(3): 824-834. DOI: 10.1681/ASN.2014050520. [8] SUDO R, SATO F, AZECHI T, et al. miR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells[J]. Genes Cells, 2015, 20(12): 1077-1087. DOI: 10.1111/gtc.12311. [9] DU Y Y, WANG Y, WANG L, et al. Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2[J]. Circ Res, 2011, 108(8): 917-928. DOI: 10.1161/CIRCRESAHA.110.234328. [10] DU Y Y, GAO C, LIU Z Y, et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification[J]. Arterioscler Thromb Vasc Biol, 2012, 32(11): 2580-2588. DOI: 10.1161/ATVBAHA.112.300206. [11] XU T H, QIU X B, SHENG Z T, et al. Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy[J]. J Cell Physiol, 2019, 234(8): 14306-14318. DOI: 10.1002/jcp.28130. [12] HE L B, BI Y, WANG R L, et al. Detection of a 4 bp mutation in the 3'UTR region of goat Sox9 gene and its effect on the growth traits[J]. Animals(Basel), 2020, 10(4): 672. DOI: 10.3390/ani10040672. [13] BALDERMAN J A F, LEE H Y, MAHONEY C E, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification[J]. J Am Heart Assoc, 2012, 1(6): e003905. DOI: 10.1161/JAHA.112.003905. [14] LIN X, LI F, XU F, et al. Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1[J]. Aging, 2019, 11(10): 3182-3197. DOI: 10.18632/aging.101973. [15] 何雷,徐金升,白亚玲,等.miRNA103在高磷诱导的血管平滑肌细胞钙化中的作用[J].山西医科大学学报, 2021, 52(1): 50-55. DOI: 10.13753/j.issn.1007-6611.2021.01.009. [16] GOETTSCH C, RAUNER M, PACYNA N, et al. miR-125b regulates calcification of vascular smooth muscle cells[J]. Am J Pathol, 2011, 179(4): 1594-1600. DOI: 10.1016/j.ajpath.2011.06.016. [17] CHEN N X, KIATTISUNTHORN K, O'NEILLK D, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease(CKD)[J]. PLoS One, 2013, 8(5): e64558. DOI: 10.1371/journal.pone.0064558. [18] WEN P, CAO H D, FANG L, et al. miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment[J]. Exp Cell Res, 2014, 322(2): 302-312. DOI: 10.1016/j.yexcr.2014.01.025. [19] HEO S H, CHO J Y. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP[J]. Int J Biol Sci, 2014, 10(4): 438-447. DOI: 10.7150/ijbs.8095. [20] LIAO X B, ZHANG Z Y, YUAN K, et al. miR-133a modulates osteogenic differentiation of vascular smooth muscle cells[J]. Endocrinology, 2013, 154(9): 3344-3352. DOI: 10.1210/en.2012-2236. [21] QIAO W W, CHEN L, ZHANG M X. microRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells[J]. Cell Physiol Biochem, 2014, 33(6): 1945-1953. DOI: 10.1159/000362971. [22] ZHANG Z M, JIANG W H, YANG H, et al. The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo[J]. Exp Cell Res, 2018, 362(2): 324-331. DOI: 10.1016/j.yexcr.2017.11.033. [23] CUI R R, LI S J, LIU L J, et al. microRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo[J]. Cardiovasc Res, 2012, 96(2): 320-329. DOI: 10.1093/cvr/cvs258. [24] LIN X, XU F, CUI R R, et al. Arterial calcification is regulated via an miR-204/DNMT3a regulatory circuit both in vitro and in female mice[J]. Endocrinology, 2018, 159(8): 2905-2916. DOI: 10.1210/en.2018-00320. [25] SUN W L, WANG N, XU Y. Impact of miR-302b on calcium-phosphorus metabolism and vascular calcification of rats with chronic renal failure by regulating BMP-2/Runx2/osterix signaling pathway[J]. Arch Med Res, 2018, 49(3): 164-171. DOI: 10.1016/j.arcmed.2018.08.002. [26] LIU J H, XIAO X H, SHEN Y Y, et al. microRNA-32 promotes calcification in vascular smooth muscle cells: implications as a novel marker for coronary artery calcification[J]. PLoS One, 2017, 12(3): e0174138. DOI: 10.1371/journal.pone.0174138. [27] XIA Z Y, HU Y, XIE P L, et al. Runx2/miR-3960/miR-2861 positive feedback loop is responsible for osteogenic transdifferentiation of vascular smooth muscle cells[J]. Biomed Res Int, 2015, 2015: 624037. DOI: 10.1155/2015/624037. [28] CHOE N, SHIN S, JOUNG H, et al. The microRNA miR-134-5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells[J]. J Cell Mol Med, 2020, 24(18): 10542-10550. DOI: 10.1111/jcmm.15670. [29] RANGREZ A Y, M'BAYA-MOUTOULA E, METZINGER-LE MEUTH V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223[J]. PLoS One, 2012, 7(10): e47807. DOI: 10.1371/journal.pone.0047807. |
[1] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 1-7. |
[2] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 15-21. |
[3] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 22-28. |
[4] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 66-71. |
[5] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(4): 31-36. |
[6] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(4): 67-74. |
[7] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(3): 38-45. |
[8] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 25-32. |
[9] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 33-38. |
[10] | . [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(6): 9-14. |
[11] | ZHANG Hongqiang, ZHANG Bing, LI Jianqi, JU Hailong. Mesenchymal stem cells for cardiac repair: opportunities and challenges [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 25-30. |
[12] | HUANG Shengnan,ZHAO Rui,XIAO Nuan. Developments on telemedicine in management of senile hypertension [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(4): 39-44. |
[13] | WANG Jing, HAN Li, ZHANG Zeming. Advances on chronic obstructive pulmonary disease associated pulmonary hypertension [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(3): 21-28. |
[14] | LI Ming, SU Wei, MA Shiheng, WANG Tao. Effects of PDCD5 on the patients with severe influenza [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(2): 10-15. |
[15] | WANG Xinxin, LI Lu, WU Guangyi. Advances on the role of purine receptor in blood pressure regulation [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||