Journal of Hebei Medical College for Continuing Education ›› 2024, Vol. 41 ›› Issue (2): 29-41.DOI: 10.3969/j.issn.1674-490X.2024.02.005
Previous Articles Next Articles
Received:
2024-03-06
Online:
2024-04-25
Published:
2024-04-25
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: //yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2024.02.005
[1] ALBER J, ALLADI S, BAE H J, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia(VCID): knowledge gaps and opportunities[J]. Alzheimers Dement, 2019, 5: 107-117. DOI: 10.1016/j.trci.2019.02.001. [2] POELS M M, VERNOOIJ M W, IKRAM M A, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study[J]. Stroke, 2010, 41(10 Suppl): S103-S106. DOI: 10.1161/STROKEAHA.110.595181. [3] LARA F R, SCRUTON A L, PINHEIRO A, et al. Aging, prevalence and risk factors of MRI-visible enlarged perivascular spaces[J]. Aging, 2022, 14(17): 6844-6858. DOI: 10.18632/aging.204181. [4] LOHNER V, BROOKES R L, HOLLOCKS M J, et al. Apathy, but not depression, is associated with executive dysfunction in cerebral small vessel disease[J]. PLoS One, 2017, 12(5): e0176943. DOI: 10.1371/journal.pone.0176943. [5] DING M Y, XU Y, WANG Y Z, et al. Predictors of cognitive impairment after stroke: a prospective stroke cohort study[J]. J Alzheimers Dis, 2019, 71(4): 1139-1151. DOI: 10.3233/JAD-190382. [6] PINES A. Mid-life smoking and cognition[J]. Climacteric, 2011, 14(4): 426-427. DOI: 10.3109/13697137.2011.557598. [7] 孙芩玲,雷曦,曹英,等.吸烟对中老年人轻度认知功能障碍的影响[J].湖北医药学院学报, 2017, 36(4): 330-333, 337. DOI: 10.13819/j.issn.1006-9674.2017.04.010. [8] 张博,郭倩,贾晓鑫.高血压合并腔隙性脑梗死认知障碍特点及影响因素分析[J].神经损伤与功能重建, 2020, 15(12): 737-739, 744. DOI: 10.16780/j.cnki.sjssgncj.20181346. [9] 邓美霞,王敏,潘政,等.脑动脉狭窄与血管性认知障碍的相关性研究进展[J].疑难病杂志, 2022, 21(3): 317-320, 324. DOI: 10.3969/j.issn.1671-6450.2022.03.023. [10] SHULYATNIKOVA T, HAYDEN M R. Why are perivascular spaces important?[J]. Medicina, 2023, 59(5): 917. DOI: 10.3390/medicina59050917. [11] YANG Y Y, WANG M, LUAN M X, et al. Enlarged perivascular spaces and age-related clinical diseases[J]. Clin Interv Aging, 2023, 18: 855-867. DOI: 10.2147/CIA.S404908. [12] CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: a clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/WNL.0000000000007654. [13] BIESBROEK J M, WEAVER N A, BIESSELS G J. Lesion location and cognitive impact of cerebral small vessel disease[J]. Clin Sci, 2017, 131(8): 715-728. DOI: 10.1042/CS20160452. [14] LI C J, LU Y, ZHOU M, et al. Activation of GABAB receptors ameliorates cognitive impairment via restoring the balance of HCN1/HCN2 surface expression in the hippocampal CA1 area in rats with chronic cerebral hypoperfusion[J]. Mol Neurobiol, 2014, 50(2): 704-720. DOI: 10.1007/s12035-014-8736-3. [15] CHEN Y D, ZHANG J, WANG Y, et al. Efficacy of cholinesterase inhibitors in vascular dementia: an updated meta-analysis[J]. Eur Neurol, 2016, 75(3/4): 132-141. DOI: 10.1159/000444253. [16] WARDLAW J M, SMITH C, DICHGANS M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. DOI: 10.1016/S1474-4422(19)30079-1. [17] LUCA M, LUCA A, CALANDRA C. The role of oxidative damage in the pathogenesis and progression of Alzheimer's disease and vascular dementia[J]. Oxid Med Cell Longev, 2015, 2015: 504678. DOI: 10.1155/2015/504678. [18] BAO Q N, XIA M Z, XIONG J, et al. The effect of acupuncture on oxidative stress in animal models of vascular dementia: a systematic review and meta-analysis[J]. Syst Rev, 2024, 13(1): 59. DOI: 10.1186/s13643-024-02463-x. [19] BENKHALIFA M, FERREIRA Y J, CHAHINE H, et al. Mitochondria: participation to infertility as source of energy and cause of senescence[J]. Int J Biochem Cell Biol, 2014, 55: 60-64. DOI: 10.1016/j.biocel.2014.08.011. [20] WARDLAW J M, SMITH C, DICHGANS M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging[J]. Lancet Neurol, 2013, 12(5): 483-497. DOI: 10.1016/S1474-4422(13)70060-7. [21] KERKHOFS D, WONG S M, ZHANG E, et al. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study[J]. Geroscience, 2021, 43(4): 1643-1652. DOI: 10.1007/s11357-021-00399-x. [22] TOPAKIAN R, BARRICK T R, HOWE F A, et al. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis[J]. J Neurol Neurosurg Psychiatry, 2010, 81(2): 192-197. DOI: 10.1136/jnnp.2009.172072. [23] PARODI-RULLÁN R, SONE J Y, FOSSATI S. Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer's Disease[J].J Alzheimers Dis, 2019, 72(4): 1019-1039. DOI: 10.3233/JAD-190357. [24] 袁俊亮,李卓然,胡文立.应加强生物学标志物在脑小血管病发病机制中的研究[J].中华医学杂志, 2020, 100(43): 3381-3384. DOI: 10.3760/cma.j.cn112137-20200607-01793. [25] 李薇,谭丽华,方兴.高同型半胱氨酸血症与血管性认知障碍相关性研究进展[J].中国医学创新, 2024, 21(2): 184-188. DOI: 10.3969/j.issn.1674-4985.2024.02.042. [26] MIJAILOVIC N R, VESIC K, BOROVCANIN M M. The influence of serum uric acid on the brain and cognitive dysfunction[J]. Front Psychiatry, 2022, 13: 828476. DOI: 10.3389/fpsyt.2022.828476. [27] TANA C, TICINESI A, PRATI B, et al. Uric acid and cognitive function in older individuals[J]. Nutrients, 2018, 10(8): 975. DOI: 10.3390/nu10080975. [28] WANG T, SUN Z W, SHAO L Q, et al. Diagnostic values of serum levels of homocysteine and uric acid for predicting vascular mild cognitive impairment in patients with cerebral small vessel disease[J]. Med Sci Monit, 2017, 10(23): 2217-2225. DOI: 10.12659/msm.901652. [29] VANNORSDALL T D, JINNAH H A, GORDON B, et al. Cerebral ischemia mediates the effect of serum uric acid on cognitive function[J]. Stroke, 2008, 39(12): 3418-3420. DOI: 10.1161/STROKEAHA.108.521591. [30] PATEL B, MARKUS H S. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker[J]. Int J Stroke, 2011, 6(1): 47-59. DOI: 10.1111/j.1747-4949.2010.00552.x. [31] 仪忠俊,董保华,牛兆青,等.低密度脂蛋白胆固醇在脑小血管病中的临床意义及其与患者认知水平的关系[J]. 东南大学学报(医学版), 2018, 37(1): 107-112. DOI: 10.3969/j.issn.1671-6264.2018.01.023. [32] UEMURA M T, MAKI T, IHARA M, et al. Brain microvascular pericytes in vascular cognitive impairment and dementia[J]. Front Aging Neurosci, 2020, 12: 80. DOI: 10.3389/fnagi.2020.00080. [33] WANG X, CHAPPELL F M, VALDES HERNANDEZ M, et al. Endothelial function, inflammation, thrombosis, and basal ganglia perivascular spaces in patients with stroke[J]. J Stroke Cerebrovasc Dis, 2016, 25(12): 2925-2931. DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.007. [34] ROST N S, MESCHIA J F, GOTTESMAN R, et al. Cognitive impairment and dementia after stroke: design and rationale for the DISCOVERY study[J]. Stroke, 2021, 52(8): e499-e516. DOI: 10.1161/STROKEAHA.120.031611. [35] VIRMANI R, KOLODGIE F D, BURKE A P, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1262-1275. DOI: 10.1161/01.atv.20.5.1262. [36] ROHER A E, TYAS S L, MAAROUF C L, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer's disease dementia[J]. Alzheimers Dement, 2011, 7(4): 436-444. DOI: 10.1016/j.jalz.2010.08.228. [37] WINGO A P, FAN W, DUONG D M, et al. Shared proteomic effects of cerebral atherosclerosis and Alzheimer's disease on the human brain[J]. Nat Neurosci, 2020, 23(6): 696-700. DOI: 10.1038/s41593-020-0635-5. [38] 肖丕娟,彭勇.血压变异性与认知障碍相关性的研究进展[J].临床内科杂志, 2023, 40(12): 860-862. DOI: 10.3969/j.issn.1001-9057.2023.12.021. [39] 贾丽娜,吴美妮,尹昌浩.2型糖尿病认知功能障碍发病机制的研究进展[J].临床荟萃, 2023, 38(6): 554-558. DOI: 10.3969/j.issn.1004-583X.2023.06.014. [40] COURNOT M, BURILLO E, SAULNIER P J, et al. Circulating concentrations of redox biomarkers do not improve the prediction of adverse cardiovascular events in patients with type 2 diabetes mellitus[J]. J Am Heart Assoc, 2018, 7(5): e007397. DOI: 10.1161/JAHA.117.007397. [41] DODD J W, CHUNG A W, VAN DEN BROEK M D, et al. Brain structure and function in chronic obstructive pulmonary disease: a multimodal cranial magnetic resonance imaging study[J]. Am J Respir Crit Care Med, 2012, 186(3): 240-245. DOI: 10.1164/rccm.201202-0355OC. [42] 杨柳易,吴运瑶,洪婷.慢性阻塞性肺疾病与认知功能障碍[J].实用中西医结合临床, 2018, 18(2): 179-181. DOI: 10.13638/j.issn.1671-4040.2018.02.101. [43] DURAZZO T C, MEYERHOFF D J, NIXON S J. Chronic cigarette smoking: implications for neurocognition and brain neurobiology[J]. Int J Environ Res Public Health, 2010, 7(10): 3760-3791. DOI: 10.3390/ijerph7103760. [44] BASTA M, KOUTENTAKI E, VGONTZAS A, et al. Objective daytime napping is associated with disease severity and inflammation in patients with mild to moderate Dementia1[J]. J Alzheimers Dis, 2020, 74(3): 803-815. DOI: 10.3233/JAD-190483. [45] HARTIALA J, BENNETT B J, WILSON TANG W H, et al. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1307-1313. DOI: 10.1161/ATVBAHA.114.303252. [46] 雷超,刘志华.肠道菌群对轻度认知障碍的影响及作用机制研究进展[J]. 广西医学, 2023, 45(9): 1089-1092, 1114. DOI: 10.11675/j.issn.0253-4304.2023.09.15. [47] ALLAN L M, ROWAN E N, FIRBANK M J, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors[J]. Brain, 2011, 134(Pt 12): 3716-3727. DOI: 10.1093/brain/awr273. [48] CHEN A Q, AKINYEMI R O, HASE Y, et al. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia[J]. Brain, 2016, 139(Pt 1): 242-258. DOI: 10.1093/brain/awv328. [49] XU X, HILAL S, COLLINSON S L, et al. Association of magnetic resonance imaging markers of cerebrovascular disease burden and cognition[J]. Stroke, 2015, 46(10): 2808-2814. DOI: 10.1161/STROKEAHA.115.010700. [50] LAMAR M, LEURGANS S, KAPASI A, et al. Complex profiles of cerebrovascular disease pathologies in the aging brain and their relationship with cognitive decline[J]. Stroke, 2022, 53(1): 218-227. DOI: 10.1161/STROKEAHA.121.034814. [51] ZWARTBOL M H, VAN DER KOLK A G, KUIJF H J, et al. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: the SMART-MR study[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1219-1228. DOI: 10.1177/0271678X20958517. [52] DEARBORN J L, ZHANG Y Y, QIAO Y, et al. Intracranial atherosclerosis and dementia: the atherosclerosis risk in communities(ARIC)study[J]. Neurology, 2017, 88(16): 1556-1563. DOI: 10.1212/WNL.0000000000003837. [53] LI M C, WANG N, DUPRE M E. Association between the self-reported duration and quality of sleep and cognitive function among middle-aged and older adults in China[J]. J Affect Disord, 2022, 304: 20-27. DOI: 10.1016/j.jad.2022.02.039. [54] BUYSSE D J, HALL M L, STROLLO P J, et al. Relationships between the Pittsburgh Sleep Quality Index(PSQI), Epworth Sleepiness Scale(ESS), and clinical/polysomnographic measures in a community sample[J]. J Clin Sleep Med, 2008, 4(6): 563-571. [55] MACHI M S, STAUM M, CALLAWAY C W, et al. The relationship between shift work, sleep, and cognition in career emergency physicians[J]. Acad Emerg Med, 2012, 19(1): 85-91. DOI: 10.1111/j.1553-2712.2011.01254.x. [56] FAUBEL R, LÓPEZ-GARCÍA E, GUALLAR-CASTILLÓN P, et al. Usual sleep duration and cognitive function in older adults in Spain[J]. J Sleep Res, 2009, 18(4): 427-435. DOI: 10.1111/j.1365-2869.2009.00759.x. [57] DEVORE E E, GRODSTEIN F, DUFFY J F, et al. Sleep duration in midlife and later life in relation to cognition[J]. J Am Geriatr Soc, 2014, 62(6): 1073-1081. DOI: 10.1111/jgs.12790. [58] JU Y E, MCLELAND J S, TOEDEBUSCH C D, et al. Sleep quality and preclinical Alzheimer disease[J]. JAMA Neurol, 2013, 70(5): 587-593. DOI: 10.1001/jamaneurol.2013.2334. [59] REYNOLDS R M, STRACHAN M W, LABAD J, et al. Morning cortisol levels and cognitive abilities in people with type 2 diabetes: the Edinburgh type 2 diabetes study[J]. Diabetes Care, 2010, 33(4): 714-720. DOI: 10.2337/dc09-1796. [60] PLASCHKE K, KOPITZ J, MATTERN J, et al. Increased cortisol levels and anticholinergic activity in cognitively unimpaired patients[J]. J Neuropsychiatry Clin Neurosci, 2010, 22(4): 433-441. DOI: 10.1176/jnp.2010.22.4.433. [61] CHENNAOUI M, SAUVET F, DROGOU C, et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha(TNF-α)levels in healthy men[J]. Cytokine, 2011, 56(2): 318-324. DOI: 10.1016/j.cyto.2011.06.002. [62] WILCOX M E, MCANDREWS M P, VAN J, et al. Sleep fragmentation and cognitive trajectories after critical illness[J]. Chest, 2021, 159(1): 366-381. DOI: 10.1016/j.chest.2020.07.036. [63] ZULIANI G, RANZINI M, GUERRA G, et al. Plasma cytokines profile in older subjects with late onset Alzheimer's disease or vascular dementia[J]. J Psychiatr Res, 2007, 41(8): 686-693. DOI: 10.1016/j.jpsychires.2006.02.008. [64] SUN Y W, CAO W W, DING W N, et al. Cerebral blood flow alterations as assessed by 3D ASL in cognitive impairment in patients with subcortical vascular cognitive impairment: a marker for disease severity[J]. Front Aging Neurosci, 2016, 8: 211. DOI: 10.3389/fnagi.2016.00211. [65] HALLER S, ZAHARCHUK G, THOMAS D L, et al. Arterial spin labeling perfusion of the brain: emerging clinical applications[J]. Radiology, 2016, 281(2): 337-356. DOI: 10.1148/radiol.2016150789. [66] BRANDHOFE A, STRATMANN C, SCHÜRE J R, et al. T2 relaxation time of the normal-appearing white matter is related to the cognitive status in cerebral small vessel disease[J]. J Cereb Blood Flow Metab, 2021, 41(7): 1767-1777. DOI: 10.1177/0271678x20972511. [67] TULADHAR A M, VAN UDEN I W, RUTTEN-JACOBS L C, et al. Structural network efficiency predicts conversion to dementia[J]. Neurology, 2016, 86(12): 1112-1119. DOI: 10.1212/WNL.0000000000002502. [68] LAWRENCE A J, CHUNG A W, MORRIS R G, et al. Structural network efficiency is associated with cognitive impairment in small-vessel disease[J]. Neurology, 2014, 83(4): 304-311. DOI: 10.1212/WNL.0000000000000612. [69] MAZINI B, DIETZ M, MARÉCHAL B, et al. Interrelation between cardiac and brain small-vessel disease: a pilot quantitative PET and MRI study[J]. Eur J Hybrid Imaging, 2023, 7(1): 20. DOI: 10.1186/s41824-023-00180-7. [70] SCHULZ M, MALHERBE C, CHENG B, et al. Functional connectivity changes in cerebral small vessel disease: a systematic review of the resting-state MRI literature[J]. BMC Med, 2021, 19(1): 103. DOI: 10.1186/s12916-021-01962-1. [71] ZHANG R T, HUANG P Y, JIAERKEN Y, et al. Venous disruption affects white matter integrity through increased interstitial fluid in cerebral small vessel disease[J]. J Cereb Blood Flow Metab, 2021, 41(1): 157-165. DOI: 10.1177/0271678X20904840. [72] AO D H, ZHANG D D, ZHAI F F, et al. Brain deep medullary veins on 3-T MRI in a population-based cohort[J]. J Cereb Blood Flow Metab, 2021, 41(3): 561-568. DOI: 10.1177/0271678x20918467. [73] XU Z H, LI F F, XING D X, et al. A novel imaging biomarker for cerebral small vessel disease associated with cognitive impairment: the deep-medullary-veins score[J]. Front Aging Neurosci, 2021, 13: 720481. DOI: 10.3389/fnagi.2021.720481. [74] DEMPFLE A K, HARLOFF A, SCHUCHARDT F, et al. Longitudinal volume quantification of deep medullary veins in patients with cerebral venous sinus thrombosis: venous volume assessment in cerebral venous sinus thrombosis using SWI[J]. Clin Neuroradiol, 2018, 28(4): 493-499. DOI: 10.1007/s00062-017-0602-z. [75] WANG X J, WEI Q, WU X Q, et al. The vessel density of the superficial retinal capillary plexus as a new biomarker in cerebral small vessel disease: an optical coherence tomography angiography study[J]. Neurol Sci, 2021, 42(9): 3615-3624. DOI: 10.1007/s10072-021-05038-z. [76] MARRALE M, COLLURA G, BRAI M, et al. Physics, techniques and review of neuroradiological applications of diffusion kurtosis imaging(DKI)[J]. Clin Neuroradiol, 2016, 26(4): 391-403. DOI: 10.1007/s00062-015-0469-9. [77] LIU H L, LIU D T, LI K, et al. Microstructural changes in the cingulate gyrus of patients with mild cognitive impairment induced by cerebral small vessel disease[J]. Neurol Res, 2021, 43(8): 659-667. DOI: 10.1080/01616412.2021.1910903. |
[1] | . [J]. Journal of Hebei Medical College for Continuing Education, 2024, 41(2): 9-14. |
[2] | . [J]. Journal of Hebei Medical College for Continuing Education, 2024, 41(2): 21-28. |
[3] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 1-7. |
[4] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 8-14. |
[5] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(3): 8-13. |
[6] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(3): 28-37. |
[7] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 18-24. |
[8] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(1): 22-28. |
[9] | LI Siqi, CAI Jingwei, SUI Lianyu, YANG Cunxia, WU Chunmei, YIN Xiaoping. Imaging progress in nonalcoholic fatty pancreatic disease and type 2 diabetes mellitus [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 7-12. |
[10] | LIU Ning, LÜ Xiaohong, SUN Yu, ZHANG Xianglin. Exploration on the application of modular teaching method in medical imaging specialty curriculum [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 75-80. |
[11] | WANG Jing, HAN Li, ZHANG Zeming. Advances on chronic obstructive pulmonary disease associated pulmonary hypertension [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(3): 21-28. |
[12] | ZHANG Jinghui,ZHAO Hanqing,WANG Zewen,XIANG Hongwei,GE Shaoqin. Simple obesity and application of TCM Piwei theory [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(3): 54-59. |
[13] | SUI Lianyu, YIN Xiaoping, WANG Jianing. Developments on radiogenomics based on MRI in lung cancer brain metastases [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(1): 25-34. |
[14] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(6): 36-43. |
[15] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(5): 7-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||