医学研究与教育 ›› 2024, Vol. 41 ›› Issue (1): 9-17.DOI: 10.3969/j.issn.1674-490X.2024.01.002
徐玉洁1,高娟2,王井辉1,任涵3,王子文2,耿硕4
收稿日期:
2023-12-21
出版日期:
2024-02-25
发布日期:
2024-02-25
通讯作者:
高娟(1972—),女,河北保定人,主任医师,教授,博士,硕士生导师,主要从事脑血管病和神经免疫疾病研究。E-mail: gaojuzhulia@163.com
作者简介:
徐玉洁(1998—),女,山东济宁人,医师,硕士,主要从事脑血管病和神经免疫疾病研究。 E-mail: 781679930@qq.com
基金资助:
Received:
2023-12-21
Online:
2024-02-25
Published:
2024-02-25
摘要: 人体肠道内定居着大量的微生物群,他们参与机体免疫稳态的调节,并与缺血性脑卒中的发生发展密切相关。脑肠轴的发现将肠道与大脑联系在一起,在人类的健康与疾病过程中发挥重要作用。现综述脑肠轴的调节机制、卒中后肠道菌群及其代谢物的调节以及基于脑肠轴对缺血性脑卒中后的大脑和肠道免疫反应的可能机制。这些研究为探索卒中后肠道和大脑免疫治疗的新方向和改善脑卒中预后提供了重要意义。
中图分类号:
徐玉洁,高娟,王井辉,任涵,王子文,耿硕. 基于脑肠轴探究缺血性脑卒中与肠道菌群免疫的研究进展[J]. 医学研究与教育, 2024, 41(1): 9-17.
[1] GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 439-458. DOI: 10.1016/S1474-4422(19)30034-1. [2] MA Q F, LI R, WANG L J, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/S2468-2667(21)00228-0. [3] HUANG Q, XIA J. Influence of the gut microbiome on inflammatory and immune response after stroke[J]. Neurol Sci, 2021, 42(12): 4937-4951. DOI: 10.1007/s10072-021-05603-6. [4] ZHANG S X. Microglial activation after ischaemic stroke[J]. Stroke Vasc Neurol, 2019, 4(2): 71-74. DOI: 10.1136/svn-2018-000196. [5] LEE J, D'AIGLE J, ATADJA L, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice[J]. Circ Res, 2020, 127(4): 453-465. DOI: 10.1161/CIRCRESAHA.119.316448. [6] MOHAJERI M H, LA FATA G, STEINERT R E, et al. Relationship between the gut microbiome and brain function[J]. Nutr Rev, 2018, 76(7): 481-496. DOI: 10.1093/nutrit/nuy009. [7] DURGAN D J, LEE J, MCCULLOUGH L D, et al. Examining the role of the microbiota-gut-brain axis in stroke[J]. Stroke, 2019, 50(8): 2270-2277. DOI: 10.1161/STROKEAHA.119.025140. [8] SCHNEIDER C, OKUN J G, SCHWARZ K V, et al. Trimethylamine-N-oxide is elevated in the acute phase after ischaemic stroke and decreases within the first days[J]. Eur J Neurol, 2020, 27(8): 1596-1603. DOI: 10.1111/ene.14253. [9] ZHANG H Y, HUANG Y Y, LI X J, et al. Dynamic process of secondary pulmonary infection in mice with intracerebral hemorrhage[J]. Front Immunol, 2021, 12: 767155. DOI: 10.3389/fimmu.2021.767155. [10] FUNG T C, OLSON C A, HSIAO E Y. Interactions between the microbiota, immune and nervous systems in health and disease[J]. Nat Neurosci, 2017, 20(2): 145-155. DOI: 10.1038/nn.4476. [11] HU W J, KONG X Y, WANG H, et al. Ischemic stroke and intestinal flora: an insight into brain-gut axis[J]. Eur J Med Res, 2022, 27(1): 73. DOI: 10.1186/s40001-022-00691-2. [12] BONAZ B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction[J]. Neurogastroenterol Motil, 2022, 34(10): e14456. DOI: 10.1111/nmo.14456. [13] BONAZ B, SINNIGER V, PELLISSIER S. Therapeutic potential of vagus nerve stimulation for inflammatory bowel diseases[J]. Front Neurosci, 2021, 15: 650971. DOI: 10.3389/fnins.2021.650971. [14] YE D Y, HU Y T, ZHU N, et al. Exploratory investigation of intestinal structure and function after stroke in mice[J]. Mediators Inflamm, 2021, 2021: 1315797. DOI: 10.1155/2021/1315797. [15] WEERTH C D. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis[J]. Neurosci Biobehav Rev, 2017, 83: 458-471. DOI: 10.1016/j.neubiorev.2017.09.016. [16] TURNBULL A V, RIVIER C L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action[J]. Physiol Rev, 1999, 79(1): 1-71. DOI: 10.1152/physrev.1999.79.1.1. [17] STRANDWITZ P, KIM K H, TEREKHOVA D, et al. GABA-modulating bacteria of the human gut microbiota[J]. Nat Microbiol 2019, 4(3): 396-403. DOI: 0.1038/s41564-018-0307-3 [18] SIVAPRAKASAM S, PRASAD P D, SINGH N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther, 2016, 164: 144-151. DOI: 10.1016/j.pharmthera.2016.04.007. [19] HAASE S, HAGHIKIA A, WILCK N, et al. Impacts of microbiome metabolites on immune regulation and autoimmunity[J]. Immunology, 2018, 154(2): 230-238. DOI: 10.1111/imm.12933. [20] SADLER R, CRAMER J V, HEINDL S, et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms[J]. J Neurosci, 2020, 40(5): 1162-1173. DOI: 10.1523/JNEUROSCI.1359-19.2019. [21] QIU L, TAO X Y, XIONG H, et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice[J]. Food Funct, 2018, 9(8): 4299-4309. DOI: 10.1039/c8fo00349a. [22] FEDOTCHEVA N, OLENIN A, BELOBORODOVA N. Influence of microbial metabolites on the nonspecific permeability of mitochondrial membranes under conditions of acidosis and loading with calcium and iron ions[J]. Biomedicines, 2021, 9(5): 558. DOI: 10.3390/biomedicines9050558. [23] DIN A U, HASSAN A, ZHU Y, et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol, 2019, 103(23/24): 9217-9228. DOI: 10.1007/s00253-019-10142-4. [24] BOINI K M, HUSSAIN T, LI P L, et al. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem, 2017, 44(1): 152-162. DOI: 10.1159/000484623. [25] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9: 3294. DOI: 10.1038/s41467-018-05470-4. [26] WLODARSKA M, LUO C W, KOLDE R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37. DOI: 10.1016/j.chom.2017.06.007. [27] ARYA A K, HU B R. Brain-gut axis after stroke[J]. Brain Circ, 2018, 4(4): 165-173. DOI: 10.4103/bc.bc_32_18. [28] BANKS W A, GRAY A M, ERICKSON M A, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit[J]. J Neuroinflammation, 2015, 12: 223. DOI: 10.1186/s12974-015-0434-1. [29] HOYLES L, SNELLING T, UMLAI U K, et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier[J]. Microbiome, 2018, 6(1): 55. DOI: 10.1186/s40168-018-0439-y. [30] TANG A T, CHOI J P, KOTZIN J J, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations[J]. Nature, 2017, 545(7654): 305-310. DOI: 10.1038/nature22075. [31] LI N, WANG X C, SUN C C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients[J]. BMC Microbiol, 2019, 19(1): 191. DOI: 10.1186/s12866-019-1552-1. [32] STANLEY D, MASON L J, MACKIN K E, et al. Translocation and dissemination of commensal bacteria in post-stroke infection[J]. Nat Med, 2016, 22(11): 1277-1284. DOI: 10.1038/nm.4194. [33] SINGH V, SADLER R, HEINDL S, et al. The gut microbiome primes a cerebroprotective immune response after stroke[J]. J Cereb Blood Flow Metab, 2018, 38(8): 1293-1298. DOI: 10.1177/0271678X18780130. [34] KLEGERIS A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns[J]. Neural Regen Res, 2021, 16(3): 423-429. DOI: 10.4103/1673-5374.293134. [35] RUHNAU J, SCHULZE J, DRESSEL A, et al. Thrombosis, neuroinflammation, and poststroke infection: the multifaceted role of neutrophils in stroke[J]. J Immunol Res, 2017, 2017: 5140679. DOI: 10.1155/2017/5140679. [36] ZHOU K C, WU J Y, CHEN J, et al. Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells[J]. J Pharmacol Sci,2019, 139(1):15-22. DOI: 10.1016/j.jphs.2018.10.012. [37] XIONG X Y, LIU L, YANG Q W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke[J]. Prog Neurobiol, 2016, 142: 23-44. DOI: 10.1016/j.pneurobio.2016.05.001. [38] KRZYSZCZYK P, KANG H J, KUMAR S, et al. Anti-inflammatory effects of haptoglobin on LPS-stimulated macrophages: role of HMGB1 signaling and implications in chronic wound healing[J]. Wound Repair Regen, 2020, 28(4): 493-505. DOI: 10.1111/wrr.12814. [39] SHEN X Y, GAO Z K, HAN Y, et al. Activation and role of astrocytes in ischemic stroke[J].Front Cell Neurosci, 2021, 15: 755955. DOI: 10.3389/fncel.2021.755955. [40] BENAKIS C, BREA D, CABALLERO S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523. DOI: 10.1038/nm.4068. [41] ZHANG D H, REN J X, LUO Y, et al. T cell response in ischemic stroke: from mechanisms to translational insights[J]. Front Immunol, 2021, 12: 707972. DOI: 10.3389/fimmu.2021.707972. [42] HALWANI R, SULTANA A, VAZQUEZ-TELLO A, et al. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma[J]. J Asthma, 2017, 54(9): 893-904. DOI: 10.1080/02770903.2017.1283696. [43] WU Y J, LI J X, SHOU J Y, et al. Diverse functions and mechanisms of regulatory T cell in ischemic stroke[J]. Exp Neurol, 2021, 343: 113782. DOI: 10.1016/j.expneurol.2021.113782. [44] ITO M, KOMAI K, MISE-OMATA S, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery[J]. Nature, 2019, 565(7738): 246-250. DOI: 10.1038/s41586-018-0824-5. [45] MALONE K, AMU S, MOORE A C, et al. The immune system and stroke: from current targets to future therapy[J]. Immunol Cell Biol, 2019, 97(1): 5-16. DOI: 10.1111/imcb.12191. [46] DOYLE K P, QUACH L N, SOLÉ M, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke[J]. J Neurosci, 2015, 35(5): 2133-2145. DOI: 10.1523/JNEUROSCI.4098-14.2015. [47] SHICHITA T, SUGIYAMA Y, OOBOSHI H, et al. Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury[J]. Nat Med, 2009, 15(8): 946-950. DOI: 10.1038/nm.1999. |
[1] | 吴迪,米甜,王贺东,王骏飞,李文娟. 淫羊藿素的药理作用及分子机制研究进展[J]. 医学研究与教育, 2023, 40(6): 1-11. |
[2] | 房翠,王秀丽,李玲钰,史福平. 缺血性脑卒中后抑郁的发病机制及新生物学指标[J]. 医学研究与教育, 2023, 40(2): 18-24. |
[3] | 李丹云,朱成振,杨斓,郭皓. 高血压中补体与T淋巴细胞的相互作用[J]. 医学研究与教育, 2022, 39(6): 9-14. |
[4] | 朱健平,李运曼. Nrf2在缺血性脑损伤中的关键性作用[J]. 医学研究与教育, 2022, 39(2): 1-9. |
[5] | 林梅英,甘东辉,高颖,王正杰,陈志敏. 原发性抗磷脂综合征患者中性粒细胞关键基因的生物信息学分析[J]. 医学研究与教育, 2022, 39(1): 8-14. |
[6] | 张孟繁,王秀丽,路潇,张文会,梁璐. 肠道菌群与缺血性脑卒中相关研究进展[J]. 医学研究与教育, 2021, 38(6): 8-14. |
[7] | 周程艳,李倩,梁宇璇,国洪宾,赵盈秋. 两种动脉粥样硬化模型制备方法的比较[J]. 医学研究与教育, 2021, 38(1): 1-11. |
[8] | 赵晶莹,吴玉斌. 情景模拟在小儿肾脏风湿免疫疾病教学中的应用[J]. 医学研究与教育, 2020, 37(5): 69-73. |
[9] | 河泰麟,庞涛. SIRT家族在缺血性脑卒中中作用的研究进展[J]. 医学研究与教育, 2020, 37(4): 1-7. |
[10] | 侯凯,李运曼. 与心肌缺血再灌注损伤相关的新型心肌保护分子靶点研究进展[J]. 医学研究与教育, 2020, 37(3): 1-9. |
[11] | 王维娜,赵春兰,梁月勉,王晔兴,张文清. 乳腺癌中Nupr1蛋白及mRNA表达及临床意义[J]. 医学研究与教育, 2020, 37(1): 14-20. |
[12] | 邹毅,杨再波,朱彬. β防御素和牙周炎的防治研究进展[J]. 医学研究与教育, 2019, 36(6): 15-20. |
[13] | 史建伟,李永吉,高铁铭,张鹏,王静. 胃癌组织中FLNa、VEGF和MVD的相关性[J]. 医学研究与教育, 2019, 36(2): 17-22. |
[14] | 瞿海龙,周英莲,张新欣,彭广军. 间充质干细胞治疗ARDS的新观点[J]. 医学研究与教育, 2018, 35(5): 7-11. |
[15] | 戎瑞雪,王洪杰,王蓓,曹志然,赵丽君,王晓晖,王克让. 免疫学相关的诺贝尔奖与学生创新能力培养[J]. 医学研究与教育, 2018, 35(2): 70-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||