医学研究与教育 ›› 2024, Vol. 41 ›› Issue (4): 21-29.DOI: 10.3969/j.issn.1674-490X.2024.04.004
王井辉1,2,高娟2,3,李恳2,3,王子文2,3,徐玉洁1,2,任涵2,4,李泽光2,4,张雨婷1,2
收稿日期:
2024-04-08
出版日期:
2024-08-25
发布日期:
2024-08-25
通讯作者:
高娟(1972—),女,河北保定人,主任医师,教授,博士,硕士生导师,主要从事脑血管病、神经免疫病研究。E-mail: gaojuzhulia@163.com
作者简介:
王井辉(1999—),男,河北廊坊人,在读硕士,主要从事脑血管病、神经免疫病研究。 E-mail: 1961158987@qq.com
基金资助:
Received:
2024-04-08
Online:
2024-08-25
Published:
2024-08-25
摘要: 脑机接口(brain-computer interface,BCI)是指人脑与外部设备之间创建直接连接,实现脑与设备的信息交换。临床医生可以使用不同方法监测大脑活动,脑电图已被用作测量大脑活动的最常用方法,具有高时间分辨率、便携性和易用性。对于患有严重运动障碍的人,BCI成为一种可行的人机界面,可以让这些患者与外界互动,帮助改善他们的生活质量。它与传统的康复方式不同,可以充分调动患者的训练积极性。综述近年来BCI领域的各项研究成果以及脑电数据集,希望能促进神经科学中脑卒中康复领域的发展。
中图分类号:
王井辉,高娟,李恳,王子文,徐玉洁,任涵,李泽光,张雨婷. 脑机接口范式及其脑电数据集研究进展[J]. 医学研究与教育, 2024, 41(4): 21-29.
[1] WU S M, WU B, LIU M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. DOI: 10.1016/S1474-4422(18)30500-3. [2] LEEB R, LEE F, KEINRATH C, et al. Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment[J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(4): 473-482. DOI: 10.1109/TNSRE.2007.906956. [3] ZHANG R, LI Y Q, YAN Y Y, et al. Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation[J]. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(1): 128-139. DOI: 10.1109/TNSRE.2015.2439298. [4] TAO T F, JIA Y G, XU G H, et al. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential[J]. J Neural Eng, 2023, 20(1):16-29. DOI: 10.1088/1741-2552/acb102. [5] MCFARLAND D J, MINER L A, VAUGHAN T M, et al. Mu and beta rhythm topographies during motor imagery and actual movements[J]. Brain Topogr, 2000, 12(3): 177-186. DOI: 10.1023/a: 1023437823106. [6] PFURTSCHELLER G, LOPES DA SILVA F H. Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clin Neurophysiol, 1999, 110(11): 1842-1857. DOI: 10.1016/s1388-2457(99)00141-8. [7] YUAN H, LIU T, SZARKOWSKI R, et al. Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements[J]. Neuroimage, 2010, 49(3): 2596-2606. DOI: 10.1016/j.neuroimage.2009.10.028. [8] SCHERER R, LEE F, SCHLOGL A, et al. Toward self-paced brain-computer communication: navigation through virtual worlds[J]. IEEE Trans Biomed Eng, 2008, 55(2 Pt 1): 675-682. DOI: 10.1109/TBME.2007.903709. [9] FALLER J, VIDAURRE C, SOLIS-ESCALANTE T, et al. Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI[J]. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(3): 313-319. DOI: 10.1109/TNSRE.2012.2189584. [10] MLADENOVIC J, FREY J, JOFFILY M, et al. Active inference as a unifying, generic and adaptive framework for a P300-based BCI[J]. J Neural Eng, 2020, 17(1): 016054. DOI: 10.1088/1741-2552/ab5d5c. [11] WITKOWSKI M, CORTESE M, CEMPINI M, et al. Enhancing brain-machine interface(BMI)control of a hand exoskeleton using electrooculography(EOG)[J]. J Neuroeng Rehabil, 2014, 11: 165. DOI: 10.1186/1743-0003-11-165. [12] SOEKADAR S R, WITKOWSKI M, VITIELLO N, et al. An EEG/EOG-based hybrid brain-neural computer interaction(BNCI)system to control an exoskeleton for the paralyzed hand[J]. Biomed Tech, 2015, 60(3): 199-205. DOI: 10.1515/bmt-2014-0126. [13] OFNER P, SCHWARZ A, PEREIRA J, et al. Upper limb movements can be decoded from the time-domain of low-frequency EEG[J]. PLoS One, 2017, 12(8): e0182578. DOI: 10.1371/journal.pone.0182578. [14] OFNER P, SCHWARZ A, PEREIRA J, et al. Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury[J]. Sci Rep, 2019, 9(1): 7134. DOI: 10.1038/s41598-019-43594-9. [15] SCHWARZ A, HÖLLER M K, PEREIRA J, et al. Decoding hand movements from human EEG to control a robotic arm in a simulation environment[J]. J Neural Eng, 2020, 17(3): 036010. DOI: 10.1088/1741-2552/ab882e. [16] CHO H, AHN M, AHN S, et al. EEG datasets for motor imagery brain-computer interface[J]. Giga Science, 2017, 6(7): 1-8. DOI: 10.1093/gigascience/gix034. [17] KAYA M, BINLI M K, OZBAY E, et al. A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces[J]. Sci Data, 2018, 5: 180211. DOI: 10.1038/sdata.2018.211. [18] MA X L, QIU S, HE H G. Multi-channel EEG recording during motor imagery of different joints from the same limb[J]. Sci Data, 2020, 7(1): 191. DOI: 10.1038/s41597-020-0535-2. [19] STIEGER J R, ENGEL S A, HE B. Continuous sensorimotor rhythm based brain computer interface learning in a large population[J]. Sci Data, 2021, 8(1): 98. DOI: 10.1038/s41597-021-00883-1. [20] MA J, YANG B H, QIU W Z, et al. A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface[J]. Sci Data, 2022, 9(1): 531. DOI: 10.1038/s41597-022-01647-1. [21] JEONG J H, CHO J H, SHIM K H, et al. Multimodal signal dataset for 11 intuitive movement tasks from single upper extremity during multiple recording sessions[J]. Gigascience, 2020, 9(10): giaa098. DOI: 10.1093/gigascience/giaa098. [22] IWAMA S, MORISHIGE M, KODAMA M, et al. High-density scalp electroencephalogram dataset during sensorimotor rhythm-based brain-computer interfacing[J]. Sci Data, 2023, 10(1): 385. DOI: 10.1038/s41597-023-02260-6. [23] DREYER P, ROC A, PILLETTE L, et al. A large EEG database with users' profile information for motor imagery brain-computer interface research[J]. Sci Data, 2023, 10(1): 580. DOI: 10.1038/s41597-023-02445-z. [24] GUGER C, DABAN S, SELLERS E, et al. How many people are able to control a P300-based brain-computer interface(BCI)?[J]. Neurosci Lett, 2009, 462(1): 94-98. DOI: 10.1016/j.neulet.2009.06.045. [25] RICCIO A, SIMIONE L, SCHETTINI F, et al. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis[J]. Front Hum Neurosci, 2013, 7: 732. DOI: 10.3389/fnhum.2013.00732. [26] ARICOÒ P, ALOISE F, SCHETTINI F, et al. Influence of P300 latency jitter on event related potential-based brain-computer interface performance[J]. J Neural Eng, 2014, 11(3): 035008. DOI: 10.1088/1741-2560/11/3/035008. [27] DA I, DUI L G, FERRANTE S, et al. Leveraging deep learning techniques to improve P300-based brain computer interfaces[J]. IEEE J Biomed Health Inform, 2022, 26(10): 4892-4902. DOI: 10.1109/JBHI.2022.3174771. [28] NI Z Y, XU J M, WU Y W, et al. Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training[J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 369-379. DOI: 10.1109/TNSRE.2022.3150007. [29] GAO W, HUANG W C, LI M, et al. Eliminating or shortening the calibration for a P300 brain-computer interface based on a convolutional neural network and big electroencephalography data: an online study[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 1754-1763. DOI: 10.1109/TNSRE.2023.3259991. [30] MOUC ˇEK R, VAR ˇEKA L, PROKOP T, et al. Event-related potential data from a guess the number brain-computer interface experiment on school children[J]. Sci Data, 2017, 4: 160121. DOI: 10.1038/sdata.2016.121. [31] SIMÕES M, BORRA D, SANTAMARÍA-VÁZQUEZ E, et al. BCIAUT-P300: a multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces[J]. Front Neurosci, 2020, 14: 568104. DOI: 10.3389/fnins.2020.568104. [32] WON K, KWON M, AHN M, et al. EEG dataset for RSVP and P300 speller brain-computer interfaces[J]. Sci Data, 2022, 9(1): 388. DOI: 10.1038/s41597-022-01509-w. [33] BRUNNER P, JOSHI S, BRISKIN S, et al. Does the ‘P300’ speller depend on eye gaze?[J]. J Neural Eng, 2010, 7(5): 056013. DOI: 10.1088/1741-2560/7/5/056013. [34] ALOISE F, ARICÕ P, SCHETTINI F, et al. A covert attention P300-based brain-computer interface: Geospell[J]. Ergonomics, 2012, 55(5): 538-551. DOI: 10.1080/00140139.2012.661084. [35] ACQUALAGNA L, BLANKERTZ B. Gaze-independent BCI-spelling using rapid serial visual presentation(RSVP)[J]. Clin Neurophysiol, 2013, 124(5): 901-908. DOI: 10.1016/j.clinph.2012.12.050. [36] REICHERT C, TELLEZ CEJA I F, SWEENEY-REED C M, et al. Impact of stimulus features on the performance of a gaze-independent brain-computer interface based on covert spatial attention shifts[J]. Front Neurosci, 2020, 14: 591777. DOI: 10.3389/fnins.2020.591777. [37] ZHENG L, SUN S, ZHAO H Z, et al. A cross-session dataset for collaborative brain-computer interfaces based on rapid serial visual presentation[J]. Front Neurosci, 2020, 14: 579469. DOI: 10.3389/fnins.2020.579469. [38] ZHANG S G, WANG Y J, ZHANG L J, et al. A benchmark dataset for RSVP-based brain-computer interfaces[J]. Front Neurosci, 2020, 14: 568000. DOI: 10.3389/fnins.2020.568000. [39] LIU B C, WANG Y J, GAO X R, et al. eldBETA: a large eldercare-oriented benchmark database of SSVEP-BCI for the aging population[J]. Sci Data, 2022, 9(1): 252. DOI: 10.1038/s41597-022-01372-9. [40] ALLISON B, LUTH T, VALBUENA D, et al. BCI demographics: how many(and what kinds of)people can use an SSVEP BCI?[J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(2): 107-116. DOI: 10.1109/TNSRE.2009.2039495. [41] EHLERS J, VALBUENA D, STILLER A, et al. Age-specific mechanisms in an SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal oscillators[J]. Comput Intell Neurosci, 2012, 2012: 967305. DOI: 10.1155/2012/967305. [42] CHEN M L, FU D N, BOGER J, et al. Age-related changes in vibro-tactile EEG response and its implications in BCI applications: a comparison between older and younger populations[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(4): 603-610. DOI: 10.1109/TNSRE.2019.2890968. [43] ZHU F K, JIANG L, DONG G Y, et al. An open dataset for wearable SSVEP-based brain-computer interfaces[J]. Sensors, 2021, 21(4): 1256. DOI: 10.3390/s21041256. [44] RENTON A I, PAINTER D R, MATTINGLEY J B. Optimising the classification of feature-based attention in frequency-tagged electroencephalography data[J]. Sci Data, 2022, 9(1): 296. DOI: 10.1038/s41597-022-01398-z. [45] WILSON H, GOLBABAEE M, PROULX M J, et al. EEG-based BCI dataset of semantic concepts for imagination and perception tasks[J]. Sci Data, 2023, 10(1): 386. DOI: 10.1038/s41597-023-02287-9. [46] HALDER S, KÄTHNER I, KÜBLER A. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments[J]. Clin Neurophysiol, 2016,127(2):1288-1296. DOI: 10.1016/j.clinph.2015.08.007. [47] JIN J, CHEN Z M, XU R, et al. Developing a novel tactile P300 brain-computer interface with a cheeks-stim paradigm[J]. IEEE Trans Biomed Eng, 2020, 67(9): 2585-2593. DOI: 10.1109/TBME.2020.2965178. [48] TREDER M S, PURWINS H, MIKLODY D, et al. Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification[J]. J Neural Eng, 2014, 11(2): 026009. DOI: 10.1088/1741-2560/11/2/026009. [49] WANG Z H, SHI N L, ZHANG Y C, et al. Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces[J]. Nat Commun, 2023, 14(1): 4213. DOI: 10.1038/s41467-023-39814-6. [50] WANG H T, LI Y Q, LONG J Y, et al. An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface[J]. Cogn Neurodyn, 2014, 8(5): 399-409. DOI: 10.1007/s11571-014-9296-y. [51] MOUSAVI M, KROL L R, DE SA V R. Hybrid brain-computer interface with motor imagery and error-related brain activity[J]. J Neural Eng, 2020, 17(5): 056041. DOI: 10.1088/1741-2552/abaa9d. [52] MAI X M, SHENG X J, SHU X K, et al. A calibration-free hybrid approach combining SSVEP and EOG for continuous control[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 3480-3491. DOI: 10.1109/TNSRE.2023.3307814. [53] PICHIORRI F, TOPPI J, SETA V D, et al. Exploring high-density corticomuscular networks after stroke to enable a hybrid Brain-Computer Interface for hand motor rehabilitation[J]. J Neuroeng Rehabil, 2023, 20(1): 5. DOI: 10.1186/s12984-023-01127-6. [54] LEE Y E, SHIN G H, LEE M J, et al. Mobile BCI dataset of scalp- and ear-EEGs with ERP and SSVEP paradigms while standing, walking, and running[J]. Sci Data, 2021, 8(1): 315. DOI: 10.1038/s41597-021-01094-4. [55] CHARLES F, DE CASTRO MARTINS C, CAVAZZA M. Prefrontal asymmetry BCI neurofeedback datasets[J]. Front Neurosci, 2020, 14: 601402. DOI: 10.3389/fnins.2020.601402. [56] CHENG S W, WANG J L, ZHANG L K, et al. Motion imagery-BCI based on EEG and eye movement data fusion[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(12): 2783-2793. DOI: 10.1109/TNSRE.2020.3048422. [57] CREA S, NANN M, TRIGILI E, et al. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living [J]. Sci Rep, 2018,8(1):10823. DOI: 10.1038/s41598-018-29091-5. |
[1] | 井坤娟,张新颖,张玲玲,王贝,袁蓓,白利静,杜小静. 卒中后老年人群心理痛苦及影响因素结构方程模型构建[J]. 医学研究与教育, 2024, 41(4): 60-73. |
[2] | 向丽莎,张一. 认知-运动双任务训练在脑卒中患者康复中的研究进展[J]. 医学研究与教育, 2024, 41(3): 8-17. |
[3] | 秦洁颖, 周柯冰, 王青青, 彭莹, 闫凤侠. 脑卒中照顾者信息需求研究进展[J]. 医学研究与教育, 2024, 41(2): 63-70. |
[4] | 徐玉洁,高娟,王井辉,任涵,王子文,耿硕. 基于脑肠轴探究缺血性脑卒中与肠道菌群免疫的研究进展[J]. 医学研究与教育, 2024, 41(1): 9-17. |
[5] | 严忠婷,桑玉还,袁媛,梁轶,王芳,鞠梅. 脑卒中患者疾病复发风险感知的研究进展[J]. 医学研究与教育, 2024, 41(1): 62-70. |
[6] | 卢丹丹,王佩,李蒙蒙,万莉,李轩,赵婧. 核磁负担评分与轻型脑卒中早期神经功能恶化的相关性[J]. 医学研究与教育, 2023, 40(4): 19-24. |
[7] | 黄雨青,王艳萌,杨信才. 脑卒中偏瘫患者步态训练的现状分析[J]. 医学研究与教育, 2023, 40(3): 46-54. |
[8] | 房翠,王秀丽,李玲钰,史福平. 缺血性脑卒中后抑郁的发病机制及新生物学指标[J]. 医学研究与教育, 2023, 40(2): 18-24. |
[9] | 王雪静,谢仙萍,吴志萍,谢婷. 中西医结合护理在脑卒中吞咽障碍康复中的研究进展[J]. 医学研究与教育, 2023, 40(2): 66-73. |
[10] | 王艳萌,王宁,隗麒轩,黄雨青,杨信才. 以三甲医院为主导的康复管理体系对脑卒中偏瘫患者的影响[J]. 医学研究与教育, 2023, 40(1): 29-32. |
[11] | 黄显义, 刘霜, 刘艳, 岳洁, 陈丽. 脑卒中患者恐惧疾病进展的研究现状[J]. 医学研究与教育, 2022, 39(5): 68-74. |
[12] | 谢瑞娟,邓赟,刘涓,杨楠,张堃. 以感觉刺激为导向的易化技术对脑卒中后上肢功能康复效果的影响[J]. 医学研究与教育, 2022, 39(4): 14-21. |
[13] | 朱健平,李运曼. Nrf2在缺血性脑损伤中的关键性作用[J]. 医学研究与教育, 2022, 39(2): 1-9. |
[14] | 杨阳,王珏,刘宁. 急性脑卒中患者吞咽障碍检出率的Meta分析[J]. 医学研究与教育, 2022, 39(2): 54-65. |
[15] | 张孟繁,王秀丽,路潇,张文会,梁璐. 肠道菌群与缺血性脑卒中相关研究进展[J]. 医学研究与教育, 2021, 38(6): 8-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||