Journal of Hebei Medical College for Continuing Education ›› 2023, Vol. 40 ›› Issue (3): 46-54.DOI: 10.3969/j.issn.1674-490X.2023.03.007
Previous Articles Next Articles
Received:
2023-02-10
Online:
2023-06-25
Published:
2023-06-25
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: //yxyjyjy.hbu.edu.cn/EN/10.3969/j.issn.1674-490X.2023.03.007
[1] 《中国脑卒中防治报告》编写组.《中国脑卒中防治报告2019》概要[J].中国脑血管病杂志, 2020, 17(5): 272-281. DOI: 10.3969/j.issn.1672-5921.2020.05.008. [2] 李林,梁莉莉,张祥祯,等.电刺激联合肌电生物反馈对脑卒中偏瘫患者步行能力的影响[J].中国康复, 2015, 30(2): 116-117. DOI: 10.3870/zgkf.2015.02.012. [3] KWAKKEL G, PEPPEN R V, WAGENAAR R C, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis[J]. Stroke, 2004, 35(11): 2529-2539. DOI: 10.1161/01.STR.0000143153.76460.7d. [4] 陈敏,李佐丽,林立,等.跑步机训练对慢性期脑卒中患者平衡功能和步行能力的影响[J].中外医学研究, 2020, 18(36): 162-164. DOI: 10.14033/j.cnki.cfmr.2020.36.065. [5] 马跃文,何曼,强琳.跑台训练对大鼠脑缺血再灌注后脑组织toll样受体2、toll样受体4信号转导通路活性的影响[J].中国康复医学杂志, 2013, 28(4): 305-310. DOI: 10.3969/j.issn.1001-1242.2013.04.006. [6] 黄婷婷,庞琼怡,项炳武,等.跑台训练通过bFGF/Caveolin-1/VEGF信号通路促进大鼠缺血半暗区神经血管再生[J].中国细胞生物学学报, 2015, 37(9): 1216-1225. DOI: 10.11844/cjcb.2015.09.0171. [7] SIBLEY K M, TANG A D, BROOKS D, et al. Feasibility of adapted aerobic cycle ergometry tasks to encourage paretic limb use after stroke: a case series[J]. J Neurol Phys Ther, 2008, 32(2): 80-87. DOI: 10.1097/NPT.0b013e318176b466. [8] 冀磊磊,阚秀丽,周云,等.数字化跑台训练对脑卒中患者步行能力的影响[J].生物医学工程与临床, 2020, 24(4): 446-449. DOI: 10.13339/j.cnki.sglc.20200623.002. [9] 王娟,赵凯,徐梅.功能性电刺激同步数字化跑台训练对脑卒中患者步态的影响[J].按摩与康复医学, 2019, 10(13): 1-4. DOI: 10.19787/j.issn.1008-1879.2019.13.001. [10] 杜志伟,陈艳,王路,等.三维运动平台训练对脑卒中偏瘫患者膝过伸步态的影响研究[J].中国康复, 2019, 34(9): 469-472. DOI: 10.3870/zgkf.2019.09.006. [11] 马俊杰.三维步态分析训练结合等速肌力训练对老年脑卒中后偏瘫患者膝过伸的影响[J].实用中西医结合临床, 2020, 20(7): 46-47, 127. DOI: 10.13638/j.issn.1671-4040.2020.07.023. [12] 万青,吴伟,刘慧华,等.脑卒中患者偏瘫步态的时空及关节运动学参数分析[J].中国康复医学杂志, 2014, 29(11): 1026-1030. DOI: 10.3969/j.issn.1001-1242.2014.11.006. [13] 李岩,吴华,姚云海,等.下肢康复机器人系统和减重平板训练对脑卒中偏瘫患者步行能力及步态的影响[J].中华物理医学与康复杂志, 2012, 34(11): 810-813. DOI: 10.3760/cma.j.issn.0254-1424.2012.011.003. [14] 王斌,王静.减重步行训练在国内的应用进展[J].中国康复医学杂志, 2010, 25(8): 815-818. DOI: 10.3969/j.issn.1001-1242.2010.08.029. [15] LIU P, WANG Y J, HU H J, et al. Change of muscle architecture following body weight support treadmill training for persons after subacute stroke: evidence from ultrasonography[J]. Biomed Res Int, 2014, 2014: 270676. DOI: 10.1155/2014/270676. [16] BONAN I V, YELNIK A P, COLLE F M, et al. Reliance on visual information after stroke. Part II: effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2004, 85(2): 274-278. DOI: 10.1016/j.apmr.2003.06.016. [17] KIM J S, KANG S Y, JEON H S. A comparison of the effects of visual deprivation and regular body weight support treadmill training on improving over-ground walking of stroke patients: a multiple baseline single subject design[J]. Physiother Theory Pract, 2015, 31(7): 466-473. DOI: 10.3109/09593985.2015.1037875. [18] 李岩,陈迎春,顾旭东,等.功能性电刺激结合减重平板训练对脑卒中患者步行及步态的影响[J].中国康复医学杂志, 2016, 31(1): 83-85. DOI: 10.3969/j.issn.1001-1242.2016.01.019. [19] 许林海,蒋松鹤,韩丽雅.减重支持步行训练联合本体感觉训练改善CIS患者平衡及步行能力的效果[J].浙江医学, 2017, 39(13): 1097-1101. DOI: 10.12056/j.issn.1006-2785.2017.39.13.2017-401. [20] 郭宝珠.对比音乐与节拍结合减重跑台训练对偏瘫患者步行能力影响的研究[D].中国医科大学, 2020: 1-25. [21] GAYDA M, JUNEAU M, GUIRAUD T, et al. Optimization and reliability of a deep water running test in healthy adults older than 45 years[J]. Am J Phys Med Rehabil, 2010, 89(9): 722-730. DOI: 10.1097/PHM.0b013e3181e7229a. [22] HALL J, MACDONALD I A, MADDISON P J, et al. Cardiorespiratory responses to underwater treadmill walking in healthy females[J]. Eur J Appl Physiol, 1998, 77(3): 278-284. DOI: 10.1007/s004210050333. [23] PARK S E, LEE M J, YOON B C, et al. Comparison of underwater and overground treadmill walking exercise to improve gait and physical function in people after stroke[J]. J Int Acad Phys Ther Res, 2010, 1: 120-125. [24] CHARALAMBOUS C, LEE D K, VRONGISTINOS K, et al. Three dimensional analysis of aquatic treadmill walking in individuals with stroke[J]. Med Sci Sports Exerc, 2008, 40(5): S19. DOI: 10.1249/01.mss.0000321527.65020.2b. [25] LIM C G. Effect of underwater treadmill gait training with water-jet resistance on balance and gait ability in patients with chronic stroke: a randomized controlled pilot trial[J]. Front Neurol, 2020, 10: 1246. DOI:10.3389/fneur.2019.01246. [26] JUNG H, HAN J, KIM C Y, et al. Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system[J].Biomed Eng Lett, 2015, 5(2): 92-97. DOI: 10.1007/s13534-015-0187-x. [27] 梁亚利,余超,廖瑞松,等.动态扰动结合双跑带运动平板训练对脑卒中偏瘫患者步行能力的影响[J].中国康复医学杂志, 2017, 32(12): 1412-1414. DOI: 10.3969/j.issn.1001-1242.2017.12.020. [28] CHUA K, LIM W S, LIM P H, et al. An exploratory clinical study on an automated, speed-sensing treadmill prototype with partial body weight support for hemiparetic gait rehabilitation in subacute and chronic stroke patients[J]. Front Neurol, 2020, 11: 747. DOI: 10.3389/fneur.2020.00747. [29] OH K, PARK J, JO S H, et al. Improved cortical activity and reduced gait asymmetry during poststroke self-paced walking rehabilitation[J]. J Neuroeng Rehabil, 2021, 18(1): 60. DOI: 10.1186/s12984-021-00859-7. [30] CHANG W H, KIM Y H. Robot-assisted therapy in stroke rehabilitation[J]. J Stroke, 2013, 15(3): 174-181. DOI: 10.5853/jos.2013.15.3.174. [31] HIRANO S, SAITOH E, TANABE S, et al. The features of Gait Exercise Assist Robot: precise assist control and enriched feedback[J]. NeuroRehabilitation, 2017, 41(1): 77-84. DOI: 10.3233/NRE-171459. [32] VAN DER KOOIJ H, VENEMAN J, EKKELENKAMP R. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot[J]. Conf Proc IEEE Eng Med Biol Soc, 2006, 2006: 189-193. DOI: 10.1109/IEMBS.2006.259397. [33] WANG Y J, MUKAINO M, HIRANO S, et al. Persistent effect of gait exercise assist robot training on gait ability and lower limb function of patients with subacute stroke: a matched case-control study with three-dimensional gait analysis[J]. Front Neurorobot, 2020, 14: 42. DOI: 10.3389/fnbot.2020.00042. [34] KAYABINAR B, ALEMDAROGˇLU-GÜRBÜZ I., YILMAZ Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial[J]. Eur J Phys Rehabil Med, 2021, 57(2): 227-237. DOI: 10.23736/S1973-9087.21.06441-8. [35] LI D X, ZHA F B, LONG J J, et al. Effect of robot assisted gait training on motor and walking function in patients with subacute stroke: a random controlled study[J]. J Stroke Cerebrovasc Dis, 2021, 30(7): 105807. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105807. [36] ZHANG F, LI K, WU D L, et al. Therapeutic effect of AiWalker on balance and walking ability in patients with stroke: a pilot study[J]. Top Stroke Rehabil, 2021, 28(3): 236-240. DOI: 10.1080/10749357.2020.1802969. [37] DE LUCA R, MARESCA G, BALLETTA T, et al. Does overground robotic gait training improve non-motor outcomes in patients with chronic stroke? Findings from a pilot study[J]. J Clin Neurosci, 2020, 81: 240-245. DOI: 10.1016/j.jocn.2020.09.070. [38] KARUNAKARAN K K, GUTE S, AMES G R, et al. Effect of robotic exoskeleton gait training during acute stroke on functional ambulation[J]. NeuroRehabilitation, 2021, 48(4): 493-503. DOI: 10.3233/NRE-210010. [39] KIM H, PARK G, SHIN J H, et al. Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: a randomised controlled trial[J]. Sci Rep, 2020, 10(1): 12461. DOI: 10.1038/s41598-020-69367-3. [40] MEHRHOLZ J, POHL M, KUGLER J, et al. The improvement of walking ability following stroke[J]. Dtsch Arztebl Int, 2018, 115(39): 639-645. DOI: 10.3238/arztebl.2018.0639. [41] BAEK C Y, CHANG W N, PARK B Y, et al. Effects of dual-task gait treadmill training on gait ability, dual-task interference, and fall efficacy in people with stroke: a randomized controlled trial[J]. Phys Ther, 2021, 101(6): pzab067. DOI: 10.1093/ptj/pzab067. [42] BOUR A, RASQUIN S, LIMBURG M, et al. Depressive symptoms and executive functioning in stroke patients: a follow-up study[J]. Int J Geriatr Psychiatry, 2011, 26(7): 679-686. DOI: 10.1002/gps.2581. [43] LORD S E, MCPHERSON K, MCNAUGHTON H K, et al. Community ambulation after stroke: how important and obtainable is it and what measures appear predictive?[J]. Arch Phys Med Rehabil, 2004, 85(2): 234-239. DOI: 10.1016/j.apmr.2003.05.002. [44] SILSUPADOL P, SIU K C, SHUMWAY-COOK A, et al. Training of balance under single- and dual-task conditions in older adults with balance impairment[J]. Phys Ther, 2006, 86(2): 269-281. [45] ALLET L, LEEMANN B, GUYEN E, et al. Effect of different walking aids on walking capacity of patients with poststroke hemiparesis[J]. Arch Phys Med Rehabil, 2009, 90(8): 1408-1413. DOI: 10.1016/j.apmr.2009.02.010. [46] POLESE J C, NASCIMENTO L R, FARIA C D, et al. Perception of patients with chronic hemiplegia regarding the use of assistive walking devices[J]. Rev Panam Salud Publica, 2011, 30(3): 204-208. DOI: 10.1590/s1020-49892011000900003. [47] POLESE J C, TEIXEIRA-SALMELA L F, NASCIMENTO L R, et al. The effects of walking sticks on gait kinematics and kinetics with chronic stroke survivors[J]. Clin Biomech(Bristol, Avon), 2012, 27(2): 131-137. DOI: 10.1016/j.clinbiomech.2011.08.003. [48] KANG Y S, CHO K H. Changes in lower limb muscle activation and gait function according to cane dependence in chronic stroke patients[J]. Technol Health Care, 2021, 29(1): 133-141. DOI: 10.3233/THC-192075. [49] JUNG K S, BANG H, IN T S, et al. Gait training with auditory feedback improves trunk control, muscle activation and dynamic balance in patients with hemiparetic stroke: a randomized controlled pilot study[J]. J Back Musculoskelet Rehabil, 2020, 33(1): 1-6. DOI: 10.3233/BMR-170852. [50] ALTSCHULER E L, WISDOM S B, STONE L, et al. Rehabilitation of hemiparesis after stroke with a mirror[J]. Lancet, 1999, 353(9169): 2035-2036. DOI: 10.1016/s0140-6736(99)00920-4. [51] HAMZEI F, ERATH G, KÜCKING U, et al. Anatomy of brain lesions after stroke predicts effectiveness of mirror therapy[J]. Eur J Neurosci, 2020, 52(6): 3628-3641. DOI: 10.1111/ejn.14698. [52] BARTUR G, PRATT H, DICKSTEIN R, et al. Electrophysiological manifestations of mirror visual feedback during manual movement[J]. Brain Res, 2015, 1606: 113-124. DOI: 10.1016/j.brainres.2015.02.029. [53] RODRIGUES L C, FARIAS N C, GOMES R P, et al. Feasibility and effectiveness of adding object-related bilateral symmetrical training to mirror therapy in chronic stroke: a randomized controlled pilot study[J]. Physiother Theory Pract, 2016, 32(2): 83-91. DOI: 10.3109/09593985.2015.1091872. [54] BRODERICK P, HORGAN F, BLAKE C, et al. Mirror therapy for improving lower limb motor function and mobility after stroke: a systematic review and meta-analysis[J]. Gait Posture, 2018, 63: 208-220. DOI: 10.1016/j.gaitpost.2018.05.017. [55] BRODERICK P, HORGAN F, BLAKE C, et al. Mirror therapy and treadmill training for patients with chronic stroke: a pilot randomized controlled trial[J].Top Stroke Rehabil, 2019, 26(3): 163-172. DOI: 10.1080/10749357.2018.1556504. [56] CHEN I H, YANG Y R, LU C F, et al. Novel gait training alters functional brain connectivity during walking in chronic stroke patients: a randomized controlled pilot trial[J]. J Neuroeng Rehabil, 2019, 16(1): 1-14. DOI: 10.1186/s12984-019-0503-2. |
[1] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(5): 53-59. |
[2] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(4): 11-18. |
[3] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(4): 19-24. |
[4] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 18-24. |
[5] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(2): 66-73. |
[6] | . [J]. Journal of Hebei Medical College for Continuing Education, 2023, 40(1): 29-32. |
[7] | HUANG Xianyi, LIU Shuang, LIU Yan, YUE Jie, CHEN Li. Research status of fear disease progression in stroke patients [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(5): 68-74. |
[8] | XIE Ruijuan, DENG Yun, LIU Juan, YANG Nan,ZHANG Kun. Effect of enhanced sensory stimulation-oriented facilitation technique in the rehabilitation of upper limb function after stroke [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(4): 14-21. |
[9] | LI Ruiming, DUAN Kaixuan, CUI Dandan, GUO Yu. Construction of curriculum system of rehabilitation treatment technology specialty based on post standard [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(4): 73-80. |
[10] | ZHU Jianping, LI Yunman. The key role of Nrf2 in ischemic stroke [J]. Journal of Hebei Medical College for Continuing Education, 2022, 39(2): 1-9. |
[11] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(6): 8-14. |
[12] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(6): 59-68. |
[13] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(2): 21-25. |
[14] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(2): 26-31. |
[15] | . [J]. Journal of Hebei Medical College for Continuing Education, 2021, 38(1): 58-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||