[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. [2] ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002. [3] BRITT K L, CUZICK J, PHILLIPS K A. Key steps for effective breast cancer prevention[J]. Nat Rev Cancer, 2020, 20(8): 417-436. DOI: 10.1038/s41568-020-0266-x. [4] SUN Y S, ZHAO Z, YANG Z N, et al. Risk factors and preventions of breast cancer[J]. Int J Biol Sci, 2017, 13(11): 1387-1397. DOI: 10.7150/ijbs.21635. [5] GILLIES R J, ANDERSON A R, GATENBY R A, et al. The biology underlying molecular imaging in oncology: from genome to anatome and back again[J]. Clin Radiol, 2010, 65(7): 517-521. DOI: 10.1016/j.crad.2010.04.005. [6] LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309. [7] 中国抗癌协会乳腺癌专业委员会.中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J].中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013. [8] LI H, SUN H, LIU S Q, et al. Assessing the performance of benign and malignant breast lesion classification with bilateral TIC differentiation and other effective features in DCE-MRI[J]. J Magn Reson Imaging, 2019, 50(2): 465-473. DOI: 10.1002/jmri.26646. [9] JIANG Y L, EDWARDS A V, NEWSTEAD G M. Artificial intelligence applied to breast MRI for improved diagnosis[J]. Radiology, 2021, 298(1): 38-46. DOI: 10.1148/radiol.2020200292. [10] MARTELOTTO L G, NG C K Y, PISCUOGLIO S, et al. Breast cancer intra-tumor heterogeneity[J]. Breast Cancer Res, 2014, 16(3): 210. DOI: 10.1186/bcr3658. [11] PEROU C M, SØRLIE T, EISEN M B, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752. DOI: 10.1038/35021093. [12] GOLDHIRSCH A, WOOD W C, COATES A S, et al. Strategies for subtypes: dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011[J]. Ann Oncol, 2011, 22(8): 1736-1747. DOI: 10.1093/annonc/mdr304. [13] 刘月平,步宏,杨文涛. 2019版中国乳腺癌HER2检测指南更新解读[J].中华病理学杂志, 2019, 48(3): 182-185. DOI: 10.3760/cma.j.issn.0529-5807.2019.03.004. [14] CASTALDO R, PANE K, NICOLAI E, et al. The impact of normalization approaches to automatically detect radiogenomic phenotypes characterizing breast cancer receptors status[J]. Cancers, 2020, 12(2): 518. DOI: 10.3390/cancers12020518. [15] LEITHNER D, BERNARD-DAVILA B, MARTINEZ D F, et al. Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes[J]. Mol Imaging Biol, 2020, 22(2): 453-461. DOI: 10.1007/s11307-019-01383-w. [16] WANG Q L, MAO N, LIU M J, et al. Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: a feasibility study[J]. Clin Imaging, 2021, 72: 136-141. DOI: 10.1016/j.clinimag.2020.11.024. [17] FAN M, ZHANG P, WANG Y, et al. Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer[J]. Eur Radiol, 2019, 29(8): 4456-4467. DOI: 10.1007/s00330-018-5891-3. [18] 陆欢,葛敏,王世威.动态增强MRI瘤内与瘤周影像组学特征对三阴性乳腺癌的诊断价值研究[J].浙江医学, 2021, 43(15): 1647-1651, 1710. DOI: 10.12056/j.issn.1006-2785.2021.43.15.2020-2722. [19] XIE T W, ZHAO Q F, FU C X, et al. Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging[J]. Eur Radiol, 2019, 29(5): 2535-2544. DOI: 10.1007/s00330-018-5804-5. [20] LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-714. DOI: 10.1002/jmri.27651. [21] BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2(ERBB2)-positive breast cancer[J]. JAMA Netw Open, 2019, 2(4): e192561. DOI: 10.1001/jamanetworkopen.2019.2561. [22] DILORENZO G, TELEGRAFO M, FORGIA D L, et al. Breast MRI background parenchymal enhancement as an imaging bridge to molecular cancer sub-type[J]. Eur J Radiol, 2019, 113: 148-152. DOI: 10.1016/j.ejrad.2019.02.018. [23] THOMPSON C M, MALLAWAARACHCHI I, DWIVEDI D K, et al. The association of background parenchymal enhancement at breast MRI with breast cancer: a systematic review and meta-analysis[J]. Radiology, 2019, 292(3): 552-561. DOI: 10.1148/radiol.2019182441. [24] 张东蕾,钱银锋,李伟,等.影响乳腺癌腋窝淋巴结转移的因素分析及不同诊断方式的对比研究[J].中国临床医学影像杂志, 2021, 32(2): 94-99. DOI: 10.12117/jccmi.2021.02.005. [25] 王季,张意辉,张丽娟,等.体重指数及体重波动对乳腺癌患者上肢淋巴水肿的影响[J].中国康复医学杂志, 2020, 35(2): 182-185. DOI: 10.3969/j.issn.1001-1242.2020.02.011. [26] GUPTA S, GUPTA N, KADAYAPRATH G, et al. Use of sentinel lymph node biopsy and early physiotherapy to reduce incidence of lymphedema after breast cancer surgery: an institutional experience[J]. Indian J Surg Oncol, 2020, 11(1): 15-18. DOI: 10.1007/s13193-019-01030-4. [27] 罗焱文,朱庆莉.乳腺癌影像组学研究进展[J].协和医学杂志, 2021, 12(6): 983-988. DOI: 10.12290/xhyxzz.2021-0011. [28] 邢滔,陈基明,颜秀芳,等.MRI纹理分析预测乳腺癌腋窝淋巴结转移的价值[J].临床放射学杂志, 2019, 38(12): 2290-2294. DOI: 10.13437/j.cnki.jcr.2019.12.015. [29] 夏旭东,段成洲,王功夏,等.MRI纹理分析预测乳腺癌腋窝淋巴结转移[J]. 中国医学影像技术, 2021, 37(4): 531-536. DOI: 10.13929/j.issn.1003-3289.2021.04.013. [30] YU Y F, TAN Y J, XIE C M, et al. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J]. JAMA Netw Open, 2020, 3(12): e2028086. DOI: 10.1001/jamanetworkopen.2020.28086. [31] TANG Y Q, CHEN L, QIAO Y T, et al. Radiomic signature based on dynamic contrast-enhanced MRI for evaluation of axillary lymph node metastasis in breast cancer[J]. Comput Math Methods Med, 2022, 2022: 1507125. DOI: 10.1155/2022/1507125. [32] KAMANGAR F, DORES G M, ANDERSON W F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world[J]. J Clin Oncol, 2006, 24(14): 2137-2150. DOI: 10.1200/JCO.2005.05.2308. [33] KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399. [34] TESHOME M, HUNT K K. Neoadjuvant therapy in the treatment of breast cancer[J]. Surg Oncol Clin N Am, 2014, 23(3): 505-523. DOI: 10.1016/j.soc.2014.03.006. [35] 刘宏,张凤翔,张芳.DCE-MRI半定量及定量分析在鉴别颈部淋巴结良恶性中的研究现状[J].磁共振成像, 2021, 12(1): 103-105. DOI: 10.12015/issn.1674-8034.2021.01.024. [36] LIU J, SUN D, CHEN L L, et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J]. Front Oncol, 2019, 9: 980. DOI: 10.3389/fonc.2019.00980. [37] CABALLO M, SANDERINK W B G, HAN L Y, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273. [38] PARK H, LIM Y, KO E S, et al. Radiomics signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer[J]. Clin Cancer Res, 2018, 24(19): 4705-4714. DOI: 10.1158/1078-0432.CCR-17-3783. |