医学研究与教育 ›› 2025, Vol. 42 ›› Issue (1): 35-45.DOI: 10.3969/j.issn.1674-490X.2025.01.004

• 临床医学 • 上一篇    

基于增强CT影像组学技术在术前预测结直肠癌错配修复系统分型中的应用

王梓萌1,王文江1,常霄1,王磊1,王大伟2,崔书君3   

  1. 1.河北北方学院研究生院, 河北 张家口 075000;
    2.河北北方学院附属第一医院胸心外科, 河北 张家口 075000;
    3.河北北方学院附属第一医院医学影像部, 河北 张家口 075000
  • 收稿日期:2024-09-23 发布日期:2025-02-28
  • 通讯作者: 崔书君(1966—)男,河北保定人,主任医师,教授,硕士生导师, 主要从事CT及MRI诊断。E-mail: hbzkjcsj@126.com
  • 作者简介:王梓萌(1998—)女,河北保定人,在读硕士,主要从事放射影像学研究。 E-mail: 1029089046@qq.com
  • 基金资助:
    河北省医学科学研究课题计划项目(20220585)

  • Received:2024-09-23 Published:2025-02-28

摘要: 目的 建立基于增强CT影像组学特征与临床特征的联合多种机器学习模型,比较其术前预测结直肠癌(colorectal cancer, CRC)患者错配修复系统(mismatch repair, MMR)分型模型的效能。方法 回顾性收集来自河北北方学院附属第一医院120例CRC患者的临床及影像学资料,将其按照7∶3随机分为训练集和验证集。于增强CT门静脉期绘制感兴趣区(region of interest, ROI),并提取影像组学特征选择最优集合。对于临床资料使用统计学方法进行分析。采用受试者操作特征曲线下面积(area under the curve, AUC)、敏感性、准确率、特异度及F1评分评估模型的诊断效能,并绘制校准及决策曲线。结果 3种算法中根据影像组学特征与临床参数特征相联合所建立的影像组学特征-临床参数特征联合模型(简称影像-临床联合模型)的效能高于其他模型。其中影像-临床联合模型中的逻辑回归算法展现了较高的性能,其验证集逻辑回归算法AUC为0.93(95% CI=0.89~0.96),支持向量机算法的AUC为0.91(95%CI=0.83~0.98),随机森林算法的AUC值为0.91(95% CI=0.73~0.97)。结论 应用基于增强CT图像所建立的影像-临床联合模型可以有效鉴别CRC的MMR分型。

关键词: 结直肠癌, 错配修复系统, 影像组学, 机器学习, 逻辑回归

Abstract: Objective To establish a multi-component machine learning model based on enhanced CT radiomics features and clinical features and compare the performance of the preoperative prediction of Mismatch Repair(MMR)typing model in colorectal cancer(CRC)patients. Methods The clinical and imaging data of 120 colorectal cancer patients from the First Affiliated Hospital of Hebei North University were retrospectively collected, and they were randomly divided into training group and validation group according to 7∶3. The Region of Interest(ROI)was drawn during the portal vein phase of enhanced CT, and the radiomics features were extracted to select the optimal set. Clinical data were analysed using statistical methods. The area under the receiver operating characteristic curve(AUC), sensitivity, accuracy, specificity and FI score were used to evaluate the diagnostic performance of the model, and the calibration and decision curves were plotted. Results The performance of the radiomics features-clinical parameters combined model(hereinafter referred to as the radiomics-clinical combined model, established by combining radiomics features with clinical parameters in 3 algorithms was higher than that of other models. Among them, the logistic regression algorithm in the radiomicsinical combined model showed high performance, with an AUC value of 0.93(95% CI=0.89~0.96)in the validation set, an AUC value of 0.91(95% CI=0.83~0.98)the support vector machine algorithm, and an AUC value of 0.91(95% CI=0.73~0.97)for the random forest algorithm. Conclusion The image-proximity joint model based on enhanced CT images can effectively identify the MMR typing of CRC.

Key words: colorectal cancer, mismatch repair systems, radiomics, machine learning, logistic regression

中图分类号: