医学研究与教育 ›› 2025, Vol. 42 ›› Issue (4): 65-74.DOI: 10.3969/j.issn.1674-490X.2025.04.008

• 教育教学 • 上一篇    

人工智能赋能助力医学遗传学教学改革的实践——以人类遗传性状分析为例

张伟伟,李少春,王恩军,李文艳,刘莉,王燕   

  1. 河北大学基础医学院, 河北 保定 071000
  • 收稿日期:2025-06-05 发布日期:2025-09-09
  • 通讯作者: 王燕(1974—),女,河北保定人,副教授,硕士,主要从事医学遗传学研究。E-mail: wyry2004@163.com
  • 作者简介:张伟伟(1980—),女,河北保定人,讲师,博士,主要从事医学遗传学研究。 E-mail: zhangweiwei827@163.com
  • 基金资助:
    教育部2024年产学合作协同育人项目(230703257252355);2021—2022年度河北省高等教育教学改革研究与实践项目(2021GJJG017);河北省高等教育教学改革研究与实践项目(2025GJJG028);2025年省级研究生示范课程(KCJSX2025001)

  • Received:2025-06-05 Published:2025-09-09

摘要: 遗传性状分析在医学遗传学教学中起着举足轻重的作用,但传统遗传性状分析环节主要通过课堂讲解和问卷调查的方式进行,其存在数据收集与处理低效、模式识别与关联性分析局限以及多源数据整合技术壁垒等问题,严重影响教学效果与学生的学习体验。随着人工智能(artificial intelligence,AI)技术的迅猛发展,深度学习、自然语言处理及计算机视觉等AI技术为遗传性状分析提供了革命性的技术支撑。通过构建“数据获取-智能分析-课堂应用”三位一体的AI辅助教学体系,并进行临床医学专业学生及亲属群体实证研究,使AI技术在遗传性状分析教学中的显著优势得到了验证。教学实践表明,AI辅助教学显著提高了学生的学习兴趣、知识掌握程度及科研实践能力。学生反馈积极,认为AI技术显著提升了遗传性状分析的效率,并帮助他们更容易理解遗传关联的复杂机制。同时,AI辅助教学也实现了教学创新,包括技术创新突破、教学模式创新以及教学价值体现,为医学遗传学教学改革提供了新思路与新方法。

关键词: 医学遗传学, 遗传性状分析, 人工智能, 教学改革, 多源数据整合

Abstract: In traditional medical genetics education, the genetic trait analysis component encounters several challenges. These include inefficient data collection and processing, limitations in pattern recognition and correlation analysis, and technical hurdles in integrating multi-source data. These issues severely impede teaching effectiveness and diminish students' learning experiences. With the rapid advancement of artificial intelligence(AI)technologies, deep learning, natural language processing, and computer vision have emerged as revolutionary tools for genetic trait analysis. This study developed a three-in-one AI-assisted teaching system encompassing “data acquisition,intelligent analysis,classroom application”. Empirical research involving clinical students and their relatives validated the substantial advantages of AI technology in genetic trait analysis instruction. Teaching practice demonstrated that AI-assisted teaching significantly boosted students' learning motivation, knowledge acquisition, and research proficiency. Students provided overwhelmingly positive feedback, noting that AI technology streamlined genetic trait analysis, enabling them to better comprehend the intricate mechanisms underlying genetic correlations. Moreover, AI-assisted teaching has spurred educational innovation, including technological breakthroughs, novel teaching models, and enhanced teaching value. This approach offers fresh perspectives and methodologies for the reform of medical genetics education.

Key words: medical genetics, genetic trait analysis, artificial intelligence, teaching reform, multi-source data integration

中图分类号: